
Original Article 427Vol. 18, No. 5, 2004

Annals of Nuclear Medicine Vol. 18, No. 5, 427–431, 2004

ORIGINAL ARTICLE

Received January 13, 2004, revision accepted April 5, 2004.
For reprint contact: Hiroyuki Takamatsu, Ph.D., The Medical

and Pharmacological Research Center Foundation, Wo32,
Inoyama, Hakui, Ishikawa 925–0613, JAPAN.

E-mail: takamatsu@mprcf.or.jp

INTRODUCTION

RECENT ANIMAL PET research has led to the development
of a PET scanner, a so-called micro-PET,1–4 for small
animals such as rats and mice, because several kinds of
disease model are easily prepared in small animals. Use of
transgenic or knockout mice facilitates investigation of
functional changes in a specific gene. PET research in
small animals makes it possible to decrease the numbers
of animals used in one experiment and may also be useful
in new drug discovery.

In recent years, a new planar positron imaging system
(PPIS) whose spatial resolution is less than 2.1 mm
FWHM has been developed to study small animals and
plants (Fig. 1).5 This system enables imaging of the two-
dimensional (projection) distribution of a positron emit-
ter in real time.5 The aim of the present study was to
examine whether this system enabled imaging of the brain
function in the mouse. As an application, we examined the
changes of dopaminergic function in a mouse model of
Parkinson’s disease.

An animal model of Parkinson’s disease induced by a
neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyri-
dine (MPTP), has often been used in mice and non-human
primates.6–10 MPTP was also reported to produce acute
parkinsonism in humans.11 A metabolite of MPTP, 1-
methyl-4-pyridinium (MPP+), is a mitochondrial toxin
that inhibits mitochondrial respiration and a dopamine
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transporter substrate.12–14 Therefore, MPTP degenerates
dopamine neurons selectively. In drug screening for novel
therapeutic agents for Parkinson’s disease, this MPTP-
induced Parkinson’s model is often used, and the effects
of various agents were judged by preservation of the
striatal dopamine content.6,8

In the present study, we tried to establish a new drug
screening method using imaging technique, and this time,
we focused on a mouse model of Parkinson’s disease
using PPIS. To examine pre- and post-synaptic changes in
dopamine neurons in the striata, we measured dopamine
transporter availability and dopamine D1 receptor binding
with [11C]β-CFT17–20 and [11C]SCH23390,15,16 re-
spectively. Furthermore, after PPIS measurements, we
measured dopamine content in the striatum by HPLC and
examined the correlation between it and [11C]β-CFT or
[11C]SCH23390 binding in vivo.

MATERIALS AND METHODS

Animal preparation
Studies were performed on 9-week-old 10 male C57BL/
6NCrj mice purchased from Charles River Japan Inc.
(Yokohama, Japan). All experiments were performed in
accordance with the institutional guidelines of The Medi-
cal and Pharmacological Research Center Foundation
and Central Research Laboratory, Hamamatsu Photonics.
MPTP hydrochloride (Sigma-Aldrich Japan, Tokyo,
Japan) was dissolved in saline, and saline or 20 mg/kg of
MPTP was intraperitoneally administered 4 times a day at
2 h intervals. Seven days after saline or MPTP treatment,
animals were anesthetized with an intraperitoneal admin-
istration of 1,500 mg/kg of urethane, fixed on an acrylic
plate with thread and surgical tape (2 animals on each
acrylic plate). Animals with an acrylic plate were placed
at the center position between two PPIS detectors (the
detector-detector distance was 30 cm), and two serial
scans with labeled compounds were performed. After
PPIS measurements, animals were sacrificed, and the
striata were removed and stored at − 80°C until measure-
ment of dopamine content.

PPIS experiment
Scans were performed with PPIS (IPS-1000-6XII;
Hamamatsu Photonics, Hamamatsu, Japan).5 This device
consists of two opposing planar detectors, each having
4 columns × 6 rows detector units.5 In the present study,
the detector-detector distance became 30 cm, and mice
heads were fixed at the center of detector units. In this con-
dition, spatial resolution of this device becomes 1.6 mm
FWHM in the focal plane.5 To measure dopamine D1

receptor binding and dopamine transporter availability,
[11C]SCH23390 (2 MBq) and [11C]β-CFT (2 MBq) were
intravenously administered to each animal, and dynamic
image data were collected for 60 min (1 min × 60 time
frames). In order to wait for a decrement of radioactivity

of each tracer, more than 2 h-long intervals were placed
between scans. Two regions of interest (ROIs) were set at
the striatum and cerebellum, respectively, using the
[11C]SCH23390 images. These same ROIs were used for
the analysis of [11C]β-CFT images. Using the counts in
the striatum and cerebellum, we defined specific binding
in the striatum (SBS) as:

counts in the striatum − counts in cerebellum
SBS =

counts in the cerebellum

In the above formula, to correct for differences in the
injection dose of each tracer, counts in the striatum and
cerebellum were used as the mean counts in the striatum
and cerebellum from 40 min to 60 min after injection,
because counts in the cerebellum 40 min after injection
became almost constant (data not shown).

Measurement of dopamine content in the striatum
The striatum from each animal was homogenized with 1
ml of 0.1 M perchloric acid containing 0.1 mM ethylene-
diamine tetraacetic acid disodium using a glass-Teflon
homogenizer, and stored for 30 min on ice. After centrifu-
gation (16,000 g) for 15 min at 4°C, the supernatant was
collected. Adding 0.1 M sodium acetate, the pH of super-
natant was adjusted to about 3, and the dopamine content
was measured by HPLC with electrochemical detection
using isoproterenol as an internal standard.

Statistical analysis
Data are presented as the mean ± SD. All data were
evaluated by analysis of variance (ANOVA) followed by
Dunnett’s multiple range test or unpaired t-test. P < 0.05
was considered significant.

RESULTS

Seven days after saline or MPTP treatment, changes in the
striatal [11C]SCH23390 and [11C]β-CFT binding are shown
in Figure 2. The [11C]SCH23390 binding was not changed,
but the [11C]β-CFT binding was significantly (p < 0.05)
decreased by MPTP treatment.

In these animals, dopamine content in the striata meas-
ured by HPLC is shown in Figure 3. The MPTP treatment
significantly (p < 0.01) decreased dopamine content (sa-
line-treated: 11.7 ± 3.0 ng/mg tissue (n = 5); MPTP-
treated: 2.3 ± 0.6 ng/mg tissue (n = 5)).

Correlation between striatal dopamine content and
[11C]SCH23390 or [11C]β-CFT binding in the striatum is
shown in Figure 4. The dopamine content in the striatum
was significantly correlated with the binding of [11C]β-
CFT in the striatum (r2 = 0.625, p < 0.05) (Fig. 4B), but not
with that of [11C]SCH23390 (r2 = 0.187) (Fig. 4A).

DISCUSSION

We examined the striatal dopamine D1 receptor binding
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and dopamine transporter availability using a novel pla-
nar positron imaging system (PPIS) with [11C]SCH23390
and [11C]β-CFT, respectively, seven days after MPTP
treatment in mice. Dopamine transporter availability was
significantly decreased by MPTP treatment. This obser-
vation is consistent with previous reports.19–21 Dopamine
content in the striatum was also significantly decreased in
the MPTP group in the present study. This result has also
commonly been reported in a mouse model of MPTP-
induced Parkinson’s disease.6–8 Furthermore, dopamine
content in the striatum significantly correlated with
dopamine transporter availability in the striatum. These

results reflect the fact that a metabolite of MPTP, MPP+,
is a substrate for the dopamine transporter and a mito-
chondrial toxin,12–14 and MPTP treatment degenerated
dopamine pre-synaptic neurons.

On the other hand, dopamine D1 receptor binding in the
striatum did not differ between the saline- and MPTP-
treated groups. In humans, primates, and rodents with
parkinsonism, the dopamine D1 receptor in the striatum
has been variously reported to be increased,9,22 un-
changed,10,23–26 and decreased.27,28 Therefore, we could
not conclude from the present results that the D1 receptor
with parkinsonism was unchanged, and further time course
studies may be required.

As shown above, to detect the changes in dopamine

Fig. 1   A picture of planar positron imaging system (left) and a typical brain image of [11C]SCH23390 (right).

Fig. 2   Mean binding of [11C]SCH23390 and [11C]β-CFT in the
mouse striatum from 40 min to 60 min after injection. Closed
and open columns indicate the saline- and MPTP-treated group,
respectively. Each column represents the mean of 5 animals and
the bar indicates S.D.

Fig. 3   Dopamine contents measured by HPLC in the striatum
7 days after saline (n = 5) or MPTP (n = 5) treatment. Each
column represents the mean and the bar indicates S.D.
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neurons in the MPTP-induced Parkinson’s model using
an imaging technique, it became clear that pre-synaptic
imaging was useful and reflected biochemical changes in
this model.

To develop novel therapeutic agents for Parkinson’s
disease, the MPTP-induced Parkinson’s model is often
used, and the effects of various agents were judged by
preservation of the striatal dopamine content.6,8 The pre-
sent dopamine transporter availability measurement using
PPIS may be an alternative screening method for anti-
Parkinson’s agents. In recent years, high throughput screen-
ing is required. Imaging technique, such as PET and this
PPIS, may be able to reduce the number of animals
necessary for one experiment. Furthermore, in the case of
PPIS, the number of animals that could be measured at
once depends on the area of the positron detectors, and this

can increase with demand. Therefore, PPIS with [11C]β-
CFT may be a new convenient screening system for anti-
parkinsonism agents. PPIS is a 2 dimension (projection)
system, and therefore, reconstruction of images is not
necessary, and good S/N data can be obtained using low
radioactivity; indeed, we injected only 2 MBq of tracer
per animal in the present study. The low level of radioac-
tivity required in a scan can avoid saturation of receptor
binding especially in small animal experiments, and also
decrease the radiation risks to experimenters.

In order to utilize PPIS, distribution data of tracers are
very important, because this system is a planar imaging
system, and there is a possibility that accumulation of a
tracer in other tissues located above and below of a target
tissue might influence the accuracy of the data. In the
present study, we confirmed them.

The present study demonstrated that PPIS could meas-
ure neurochemical and physiological functions conve-
niently in small animal experiments. This highlights the
possibility of high throughput screening of new drugs
using an imaging technique with PPIS.
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