Annals of Nuclear Medicine Vol. 18, No. 3, 263-270, 2004

Renal accumulation and excretion of radioiodinated 3-iodo-α-methyl-L-tyrosine

Naoto Shikano,* Keiichi Kawai,** Syuichi Nakajima,** Ryuichi Nishii,*** Leo Garcia Flores II,*** Akiko Kubodera,**** Nobuo Kubota,* Nobuyoshi Ishikawa* and Hideo Saji*****

> *Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences **School of Health Sciences, Faculty of Medicine, Kanazawa University ***Department of Radiology, Miyazaki Medical College ****Faculty of Pharmaceutical Sciences, Science University of Tokyo *****Graduate School of Pharmaceutical Sciences, Kyoto University

Objective: We investigated mechanisms of renal accumulation of radioiodinated 3-iodo- α -methyl-L-tyrosine (IMT), which has been used clinically for tumor imaging and as an amino acid transport marker in studies of brain and pancreas function. Methods: In this study, we used ¹²⁵I- or ¹²³I-labeled IMT ([¹²⁵I]IMT or [¹²³I]IMT) as the transport marker. Partition coefficients of [¹²⁵I]IMT were determined for hypothetic urine at pH ranging from 5 to 8. The examination of uptake and inhibition of ^{[125}I]IMT was performed using normal human renal proximal tubule epithelial cells (RPTEC), which are characteristic of the proximal convoluted tubule. The plasma protein binding ratio of ^{[125}]]IMT was determined using rats. In the *in vivo* experiments using mice, we examined biodistribution and excretion inhibition, and performed whole body autoradiography. Also, renal SPECT using [¹²³]IMT was performed using a normal canine. *Results:* Very low lipophilicity of ^{[125}]IMT in hypothetic urine suggests that a carrier-mediated pathway contributes to its marked kidney accumulation. [¹²⁵I]IMT uptake into RPTEC was significantly inhibited by 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid (BCH) in a sodium-dependent manner, suggesting reabsorption mainly via system B⁰ in apical membrane of proximal tubule. Plasma protein binding ratio of IMT was 45.4 ± 5.6%. At 6 hr after administration of IMT to mice, excretion via urinary tract was 77.51% of injected dose, and excretion into feces was 0.25%. Furosemide, ethacrynic acid and probenecid inhibited tubular secretion of [¹²⁵I]IMT in mice. We obtained very clear autoradiographs of mouse renal cortex and a canine renal SPECT image (S2-like region). Conclusions: We believe that [123]]IMT is useful for kidney imaging. In future studies, we plan to examine the use of [¹²³I]IMT in diagnosis of disease.

Key words: amino acid transport, artificial amino acid, renal cortex, 3-iodo- α -methyl-L-tyrosine