Annals of Nuclear Medicine Vol. 18, No. 2, 165-168, 2004

Improved synthesis of [¹¹C]SA4503, [¹¹C]MPDX and [¹¹C]TMSX by use of [¹¹C]methyl triflate

Kazunori KAWAMURA*,*** and Kiichi Ishiwata*

*Positron Medical Center, Tokyo Metropolitan Institute of Gerontology **SHI Accelerator Service, Ltd.

Recently we have clinically used three new radioligands, $[^{11}C]SA4503$, $[^{11}C]MPDX$, and $[^{11}C]TMSX$, for mapping sigma₁, adenosine A₁, and adenosine A_{2A} receptors, respectively, in the human brain by positron emission tomography. These radioligands are synthesized by methylation of the respective demethyl precursor with $[^{11}C]$ methyl iodide. Here we demonstrate the improved syntheses of these compounds by use of $[^{11}C]$ methyl triflate, a highly reactive alternative to $[^{11}C]$ methyl iodide.

Key words: carbon-11, methyl triflate, SA4503, MPDX, TMSX

INTRODUCTION

SYNTHESES of several ¹¹C-methylated compounds used in positron emission tomography (PET) have been improved by substituting [¹¹C]methyl triflate¹ ([¹¹C]CH₃OTf) for [¹¹C]methyl iodide ([¹¹C]CH₃I). Recently, the use of [¹¹C]CH₃OTf has been extended to the ¹¹C-methylation of amines, thiols, phenols, amides and carboxylic acids, and offered higher radiochemical yields that are carried out with smaller amounts of precursor for shorter reaction times at lower reaction temperature.^{2–10}

In the present study, we investigated the use of [¹¹C]CH₃OTf to improve syntheses of three PET radioligands (Fig. 1) that were recently applied to clinical studies in our laboratory: for mapping sigma₁, adenosine A₁, and adenosine A_{2A} receptors in the brain, [¹¹C]SA4503 ([4-*O*-methyl-¹¹C]1-{3,4-dimethoxyphenethyl}-4-{3phenylpropyl}piperazine),^{11,12}[¹¹C]MPDX ([1-*N*-methyl-¹¹C]8-dicyclopropylmethyl-1-methyl-3-propylxanthine),^{13,14} and [¹¹C]TMSX ([7-*N*-methyl-¹¹C]-(*E*)-8-{3,4,5-trimethoxystyryl}-1,3,7-trimethylxanthine)^{15,16} were used respectively. These radioligands were synthe-

E-mail: kawamura@pet.tmig.or.jp.

sized previously by methylation of the respective demethyl precursor with $[^{11}C]CH_3I$. $^{11-16}$

MATERIALS AND METHODS

1-(3,4-Dimethoxyphenethyl)-4-(3-phenylpropyl)piperazine (SA4503) was prepared by Santen Pharmaceutical Co., Ltd. (Osaka, Japan).¹⁷ 4-*O*-Demethyl SA4503, 8dicyclopropylmethyl-1-methyl-3-propylxanthine (MPDX), 8-dicyclopropylmethyl-3-propylxanthine (1-*N*-demethyl MPDX), (*E*)-8-(3,4,5-trimethoxystyryl)-1,3,7-trimethylxanthine (TMSX), and (*E*)-1,3-dimethyl-8-(3,4,5-trimethoxystyryl)xanthine (7-*N*-demethyl TMSX) were synthesized in our laboratory.^{18–20} All other chemicals were obtained from commercial sources.

Preparation of [¹¹C]CH₃OTf

[¹¹C]CO₂ was produced by CYPRIS 370 cyclotron (Sumitomo Heavy Industries Ltd., Tokyo, Japan). [¹¹C]CH₃I was prepared from [¹¹C]CO₂ via [¹¹C]CH₃OH with an automated system as previously described.²¹ [¹¹C]CH₃OTf was prepared by passing [¹¹C]CH₃I through a glass column [3.6 mm inner diameter (i.d.)] containing 200 to 300 mg silver triflate (Sigma-Aldrich Chem, Milwaukee, WI, USA) at 200°C with a N₂ flow of 30 ml/min.

Radiosynthesis of [¹¹C]SA4503, [¹¹C]MPDX, and [¹¹C]TMSX

 $[^{11}C]CH_3OTf$ was trapped in 0.25 ml solution of N,N-

Received September 22, 2003, revision accepted December 17, 2003.

For reprint contact: Kazunori Kawamura, Ph.D., Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, 1–1 Naka-cho, Itabashi-ku, Tokyo 173–0022, JAPAN.

Fig. 1 Chemical structure of [¹¹C]SA4503, [¹¹C]MPDX, and [¹¹C]TMSX.

dimethylformamide (DMF) or acetone containing 0.25 mg precursor (4-O-demethyl SA4503, 1-N-demethyl MPDX or 7-N-demethyl TMSX) and base (5 to 10 µl 0.1 to 5 M NaOH, 1 mg NaH or 10 mg Cs₂CO₃) at a room temperature or at -17 to -12°C by blowing compressed air through a thermal converter, and then heated for 0 to 3 min at 120°C. After adding a mixture of 0.65 ml 0.1 M HCl and 0.65 ml mobile phase used for preparative highperformance liquid chromatography (HPLC), the reaction mixture was applied to HPLC separation. The HPLC conditions used were YMC-Pack ODS-A columns [10 mm i.d. \times 250 mm length (column A) and 20 mm i.d. \times 250 mm length (column B), YMC Co. Ltd., Kyoto, Japan]; a mobile phase: a mixture of acetonitrile and 50 mM acetic acid/ammonium acetate (1/1) [35/65 for [¹¹C]SA4503, 45/55 for [¹¹C]MPDX and 50/50 for [¹¹C]TMSX, v/v]; a flow rate of 5 ml/min for column A and of 15 ml/min for column B; and a UV detector at 280 nm for [¹¹C]SA4503 or 260 nm for [¹¹C]MPDX and [¹¹C]TMSX. The retention times were 6.5 min and 8.5 min for 4-O-demethyl SA4503 and [¹¹C]SA4503, respectively (Fig. 2); 4.7 min, 7.9 min, and 8.8 min for 1-N-demethyl MPDX, [¹¹C]MPDX, and [7-*N*-methyl-¹¹C]8-dicyclopropylmethyl-7-methyl-3propylxanthine ($[^{11}C]$ 7-isomer), respectively (Fig. 2); and 4.7 min and 7.2 min for 7-N-demethyl TMSX and [¹¹C]TMSX, respectively (Fig. 2). All procedures for the synthesis of [¹¹C]TMSX were performed under the dim light to prevent isomerization from the (E)-form of [¹¹C]TMSX to (Z)-form.¹⁶

RESULTS AND DISCUSSION

The radiochemical yields of the three radioligands are summarized in Table 1.

Firstly ¹¹C-methylation of three demethyl precursors with [¹¹C]CH₃OTf was investigated in DMF containing aqueous NaOH, which was frequently used in the ¹¹Cmethylation with [¹¹C]CH₃OTf.^{4,5,9} Compared with the methylation with [¹¹C]CH₃I, the use of [¹¹C]CH₃OTf slightly improved the radiochemical yields of [¹¹C]SA4503

Fig. 2 HPLC separation of [¹¹C]SA4503 (a), [¹¹C]MPDX (b), and [¹¹C]TMSX (c). Column: YMC-Pack ODS-A [(a) and (c): 10 mm i.d. \times 250 mm length, and (b): 20 mm i.d. \times 250 mm length]; mobile phase, (a): acetonitrile/(50 mM acetic acid/ammonium acetate, 1/1) (35/65, v/v), (b): acetonitrile/water (45/55, v/v), and (c): acetonitrile/water (50/50, v/v); flow rate, (a) and (c): 5 ml/min and (b): 15 ml/min.

and [¹¹C]MPDX but not of [¹¹C]TMSX in the presence of 5 μ mol NaOH/5 μ l water. When trapping [¹¹C]CH₃OTf at low temperature (-17 to -12°C) followed by heating at 120°C for 1 min, the radiochemical yield of [¹¹C]SA4503 was greatly improved (56.2 ± 2.3%). For the increased radiochemical yield the heating at 120°C for 1 min was essential. On the other hand, the same procedure did not improve the radiochemical yields of [¹¹C]SA4503 may be partially explained by the trapping efficiency of [¹¹C]CH₃OTf in a DMF at low temperature: 86% at low temperature (-17 to -12°C) and 74% at a room temperature, however, the different effects between [¹¹C]SA4503 and the other two compounds are mainly explained by

Table 1 Radiochemical yields of [¹¹C]SA4503, [¹¹C]MPDX and [¹¹C]TMSX

	Reagent	Precursor	Solvent	Base	Trap ^{\$}	Reaction	Radiochemical yield (%)#	
[¹¹ C]SA4503	[¹¹ C]CH ₃ OTf	0.25 mg	0.25 ml DMF	5 µmol NaOH	room	_	$33.5 \pm 9.3 (n = 3)$	
		C C		·	room	120°C, 1 min	$35.6 \pm 8.0 (n = 3)$	
				10 μ mol NaOH	room	_	22.0	
				5 μ mol NaOH	cooling	-	1.5	
					cooling	120°C, 1 min	$56.2 \pm 2.3 (n = 3)$	
				1 mg NaH	cooling	120°C, 1 min	13.0	
	[¹¹ C]CH ₃ I	0.20 mg	0.20 ml DMF	1–2 mg NaH	cooling	120°C, 1 min	20-31*	
								[¹¹ C]7-isomer (%)§
[¹¹ C]MPDX	[¹¹ C]CH ₃ OTf	0.25 mg	0.25 ml DMF	1 µmol NaOH	room	_	0.44	41.9
				5 μ mol NaOH	room	_	$34.3 \pm 7.6 (n = 3)$	$15.4 \pm 5.8 (n = 3)$
				10 μ mol NaOH	room	-	25.0	13.0
				25 μ mol NaOH	room	-	8.9	16.9
				5 µmol NaOH	cooling	120°C, 1 min	24.2	9.6
			0.25 ml Acetone	10 μ mol NaOH	room	-	1.1	59.5
			0.25 ml DMF	1 mg NaH	room	120°C, 1 min	14.8	8.6
	[¹¹ C]CH ₃ I	1 mg	0.30 ml DMF	1 mg NaH	cooling	120°C, 1 min	19-30**	0.35-1.6
[¹¹ C]TMSX	[¹¹ C]CH ₃ OTf	0.25 mg	0.25 ml DMF	5 µmol NaOH	room	_	24.8	
				10 µmol NaOH	room	-	12.0	
				5 μ mol NaOH	cooling	120°C, 1 min	23.6	
				10 mg Cs ₂ CO ₃	room	-	$55.3 \pm 5.2 (n = 3)$	
					room	120°C, 1 min	$46.7 \pm 13 (n = 3)$	
					room	120°C, 3 min	52.1	
					cooling	120°C, 1 min	25.8	
	[¹¹ C]CH ³ I	0.50 mg	0.25 ml DMF	5–10 mg Cs ₂ CO ₃	cooling	120°C, 3 min	25-46***	

[#] The decay corrected radiochemical yields based on [¹¹C]CH₃OTf or [¹¹C]CH₃I used.

^{\$} [¹¹C]CH₃OTf or [¹¹C]CH₃I was trapped in the solvent at room temperature or at -17 to -12°C by blowing compressed air through a thermal converter.

[§] Radiochemical yields of [7-*N*-methyl-¹¹C]8-dicyclopropylmethyl-7-methyl-3-propylxanthine.

* Ref. 11, ** Ref. 13, *** Ref. 15

different reactivity of each demethyl precursor with [¹¹C]CH₃OTf. The N-H bond in both 1-*N*-demethyl-MPDX and 7-*N*-demethyl TMSX has weaker than the phenolic O-H bond in 4-*O*-demethyl SA4503. Therefore, methylation of 1-*N*-demethyl-MPDX and 7-*N*-demethyl TMSX with [¹¹C]CH₃OTf may occur faster at lower temperature than that of 4-*O*-demethyl SA4503. When the amounts of NaOH over 5 μ mol were increased, the radiochemical yields of the three compounds were reduced. A large excess of NaOH and/or the amounts of water included in the solution might affect the rate of nucleophilic substitution.

Secondly we investigated the effects of substitution of $[^{11}C]CH_3OTf$ for $[^{11}C]CH_3I$ in the original reaction conditions. In the presence of NaH (1 to 2 mg, 42 to 83 μ mol) as a base in DMF, the use of $[^{11}C]CH_3OTf$ resulted in slightly lower radiochemical yields of $[^{11}C]SA4503$ and $[^{11}C]MPDX$ than that of $[^{11}C]CH_3I$. The anhydrous condition may not be suitable for the methylation with $[^{11}C]CH_3OTf$, although it was essential for the methylation of $[^{11}C]SA4503$ and $[^{11}C]SA4503$ and $[^{11}C]MPDX$ with $[^{11}C]CH_3II$. The anhydrous condition may not be suitable for the methylation of $[^{11}C]SA4503$ and $[^{11}C]MPDX$ with $[^{11}C]CH_3II$. The anhydrous condition for the nethylation of $[^{11}C]SA4503$ and $[^{11}C]MPDX$ with $[^{11}C]CH_3II$. The anhydrous condition for the synthesis of $[^{11}C]CH_3II$ is a DMF containing Cs₂CO₃ the use of $[^{11}C]CH_3OTf$ greatly improved radiochemical yield compared with the use of $[^{11}C]CH_3II$: 55.3 ± 5.2%, vs. 25 to 46%. ¹⁵ Heating the

mixture was not necessary.

Thirdly it is reported that the radiochemical yield of ^{[11}C]WAY-100635 in acetone as a solvent of precursor was higher than that in DMF.¹⁰ Therefore, we investigated the effect of acetone as solvent on the radiosynthesis of only [¹¹C]MPDX, because 4-O-demethyl SA4503 and 7-N-demethyl TMSX were scarcely dissolved in acetone. In acetone the radiochemical yield of [¹¹C]MPDX became negligible (1.1%), whereas that of $[^{11}C]$ 7-isomer was very high (59.5%). The summed radiochemical yield of [¹¹C]MPDX and [¹¹C]7-isomer in acetone was the highest among all conditions investigated. Polarity of the solvent greatly affected to stereoselectivity of nucleophilic reaction. As for the stereoselectivity, the base used is also the other factor. The ratio of $[^{11}C]MPDX$ ($[^{11}C]1$ isomer) and [11C]7-isomer was differently affected by the amounts of NaOH in the range of 1 to 25 µmol in DMF. In the previous study we found that methylation with ^{[11}C]CH₃I in DMF containing Cs₂CO₃ or K₂CO₃ resulted in the largest ratio of [¹¹C]7-isomer to [¹¹C]MPDX.¹³ When the precursor was treated with NaH in anhydrous DMF, dehydrogation easily occurred at 1-N-position, but not 7-N-position of xanthine, which resulted in much selective synthesis of [¹¹C]MPDX by use of [¹¹C]CH₃I.¹³

Thus, the substitution of [¹¹C]CH₃OTf for [¹¹C]CH₃I

produced higher radiochemical yields of all three radioligands investigated. It is pointed out that HPLC separation of three radioligands was not improved by use of [¹¹C]CH₃OTf, because the amounts of unexpected by-products produced were not so much in each reaction with [¹¹C]CH₃OTf or [¹¹C]CH₃I. In the syntheses of ^{[11}C]MPDX and ^{[11}C]TMSX by using ^{[11}C]CH₃OTf the amount of respective precursor (0.25 mg) used was smaller than those in the previous syntheses using [¹¹C]CH₃I, although the amounts were not optimized in the previous syntheses.^{13,15} A 1 to 3 min shorter reaction time may be another advantage in the syntheses of [11C]MPDX and ^{[11}C]TMSX. As the other advantage of the use of ^{[11}C]CH₃OTf, an anhydrous condition is not required in the syntheses of [¹¹C]SA4503 and [¹¹C]MPDX, as a compared with previous syntheses using $[^{11}C]CH_3I$ and NaH.^{11,13} In conclusion, the radiochemical yields of [¹¹C]SA4503, [¹¹C]MPDX and [¹¹C]TMSX were improved by the use of $[^{11}C]CH_3OTf$.

ACKNOWLEDGMENT

This work was supported by a Grant-in-Aid for Scientific Research (B) No. 13557077 from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

REFERENCES

- Jewett DM. A simple synthesis of [¹¹C]methyl triflate. Int J Rad Appl Instrum [A] 1992; 43: 1383–1385.
- 2. Bender D, Holschbach M, Stocklin G. Synthesis of n.c.a. carbon-11 labelled clozapine and its major metabolite clozapine-*N*-oxide and comparison of their biodistribution in mice. *Nucl Med Biol* 1994; 21: 921–925.
- Chakraborty PK, Gildersleeve DL, Jewett DM, Toorongian SA, Kilbourn MR, Schwaiger M, et al. High yield synthesis of high specific activity *R*-(–)-[¹¹C]epinephrine for routine PET studies in humans. *Nucl Med Biol* 1993; 20: 939–944.
- 4. Langer O, Någren K, Dolle F, Lundkvist C, Sandell J, Swahn CG, et al. Precursor synthesis and radiolabelling of the dopamine D₂ receptor ligand [¹¹C]raclopride from [¹¹C]methyl triflate. *J Label Compd Radiopharm* 1999; 42: 1183–1193.
- Lundkvist C, Sandell J, Någren K, Pike VW, Halldin C. Improved syntheses of the PET radioligands, [¹¹C]FLB 457, [¹¹C]MDL 100907 and [¹¹C]β-CIT-FE, by the use of [¹¹C]methyl triflate. *J Label Compd Radiopharm* 1998; 41: 545–556.
- Fujio M, Nagata S, Kawamura K, Sugiyama N, Tanaka H, Uno K, et al. Synthesis and evaluation of ¹¹C-labeled (S)-N-{[1-(2-phenylethyl) pyrrolidin-2-yl]methyl}-3-methylthiobenzamide as a PET 5-HT_{1A} receptor ligand. *Nucl Med Biol* 2002; 29: 657–663.
- Någren K, Halldin C, Muller L, Swahn CG, Lehikoinen P. Comparison of [¹¹C]methyl triflate and [¹¹C]methyl iodide in the synthesis of PET radioligands such as [¹¹C]β-CIT and [¹¹C]β-CFT. *Nucl Med Biol* 1995; 22: 965–979.
- 8. Någren K, Muller L, Halldin C, Swahn CG, Lehikoinen P.

Improved synthesis of some commonly used PET radioligands by the use of [¹¹C]methyl triflate. *Nucl Med Biol* 1995; 22: 235–239.

- Någren K, Halldin C. Methylation of amide and thiol functions with [¹¹C]methyl triflate, as exemplified by [¹¹C]NMSP, [¹¹C]flumazenil and [¹¹C]methionine. *J Label Compd Radiopharm* 1998; 41: 831–841.
- Wegman TD, Maas B, Elsinga PH, Vaalburg W. An improved method for the preparation of [¹¹C]verapamil. Appl *Radiat Isot* 2002; 57: 505–507.
- Kawamura K, Ishiwata K, Tajima H, Ishii S, Matsuno K, Homma Y, et al. *In vivo* evaluation of [¹¹C]SA4503 as a PET ligand for mapping CNS sigma₁ receptors. *Nucl Med Biol* 2000; 27: 255–261.
- Kawamura K, Ishiwata K, Shimada Y, Kimura Y, Kobayashi T, Matsuno K, et al. Preclinical evaluation of [¹¹C]SA4503: radiation dosimetry, *in vivo* selectivity and PET imaging of sigma₁ receptors in the cat brain. *Ann Nucl Med* 2000; 14: 285–292.
- Noguchi J, Ishiwata K, Furuta R, Simada J, Kiyosawa M, Ishii S, et al. Evaluation of carbon-11 labeled KF15372 and its ethyl and methyl derivatives as a potential CNS adenosine A₁ receptor ligand. *Nucl Med Biol* 1997; 24: 53–59.
- Ishiwata K, Nariai T, Kimura Y, Oda K, Kawamura K, Ishii K, et al. Preclinical studies on [¹¹C]MPDX for mapping adenosine A₁ receptors by positron emission tomography. *Ann Nucl Med* 2002; 16: 377–382.
- Ishiwata K, Noguchi J, Wakabayashi S, Shimada J, Ogi N, Nariai T, et al. ¹¹C-labeled KF18446: a potential central nervous system adenosine A_{2a} receptor ligand. *J Nucl Med* 2000; 41: 345–354.
- Ishiwata K, Wang WF, Kimura Y, Kawamura K, Ishii K. Preclinical studies on [¹¹C]TMSX for mapping adenosine A_{2A} receptors by positron emission tomography. *Ann Nucl Med* 2003; 17: 205–211.
- 17. Fujimura K, Matsumoto J, Niwa M, Kobayashi T, Kawashima Y, et al. Synthesis, structure and quantitative structure-activity relationships of σ receptor ligands, 1-[2-(3,4-dimethoxyphenyl)ethyl]-4-(3-phenylpropyl)piper-azines. *Bioorg Med Chem* 1997; 5: 1675–1683.
- Kawamura K, Elsinga PH, Kobayashi T, Ishii S, Wang WF, Matsuno K, et al. Synthesis and evaluation of ¹¹C- and ¹⁸Flabeled 1-[2-(4-alkoxy-3-methoxyphenyl)ethyl]-4-(3phenylpropyl)piperazines as sigma receptor ligands for positron emission tomography studies. *Nucl Med Biol* 2003; 30: 273–284.
- Shimada J, Suzuki F, Nonaka H, Karasawa A, Mizumoto H, Ohno T, et al. 8-(Dicyclopropylmethyl)-1,3-dispropylxanthine: a potent and selective adenosine A1 antagonist with renal protective and diuretic activities. *J Med Chem* 1991; 34: 466–469.
- 20. Shimada J, Suzuki F, Nonaka H, Ishii A, Ichikawa S. (*E*)-1,3-dialkyl-7-methyl-8-(3,4,5-trimethoxystyryl)xanthines: potent and selective adenosine A2 antagonists. *J Med Chem* 1992; 35: 2342–2345.
- 21. Ishiwata K, Seki H, Ishii K, Ishii S, Nozaki T, Senda M. Synthesis and *in vivo* evaluation of [¹¹C]semotiadil, a benzothiazine calcium antagonist. *Appl Radiat Isot* 1994; 45: 439–443.