Annals of Nuclear Medicine Vol. 18, No. 2, 161-163, 2004

# A case of renal pelvic tumor visualized by <sup>18</sup>F-FDG-PET imaging

Naoto WATANABE,\* Hiroshi KATO,\* Masashi SHIMIZU,\* Kyo NOGUCHI,\* Yuichi KAMISAKI,\* Hideki Fuse,\*\* Ichiro Matsunari,\*\*\* Kinichi Hisada\*\*\* and Hikaru Seto\*

Departments of \*Radiology and \*\*Urology, Toyama Medical and Pharmaceutical University \*\*\*Medical and Pharmacological Research Foundation

<sup>18</sup>F fluorodeoxyglucose positron emission tomography (<sup>18</sup>F-FDG PET) imaging is a useful modality in detecting various tumors, including renal cell carcinoma. We evaluated a patient with renal pelvic tumor (transitional cell carcinoma) with multiple metastases using <sup>18</sup>F-FDG PET imaging and detected abnormal increased uptake of a right renal pelvic tumor extending to the renal cortex with liver metastasis and paraaortic lymph node metastases. These results suggest that <sup>18</sup>F-FDG PET imaging may be useful in detecting primary and metastatic lesions of renal pelvic tumor (transitional cell carcinoma).

Key words: <sup>18</sup>F-FDG PET, renal pelvic tumor, transitional cell carcinoma, tumor imaging

### INTRODUCTION

TRANSITIONAL CELL CARCINOMA of the upper urinary tract is an uncommon disease. It is estimated that renal pelvis tumors constitute less than 1% of all urinary tract tumors.<sup>1</sup> Radiological imaging plays a critical role in detection, evaluation, and disease monitoring.<sup>2</sup>

<sup>18</sup>F fluorodeoxyglucose (<sup>18</sup>F-FDG) has been demonstrated to have affinity for a variety of malignant tumors.<sup>3</sup> Tumor uptake of <sup>18</sup>F-FDG in renal cell carcinoma<sup>4</sup> and bladder cancer<sup>5</sup> was reported. <sup>18</sup>F-FDG may accumulate in renal pelvic tumor. However, to our knowledge, tumor uptake of <sup>18</sup>F-FDG in renal pelvic tumor (transitional cell carcinoma) has not been described in detail.

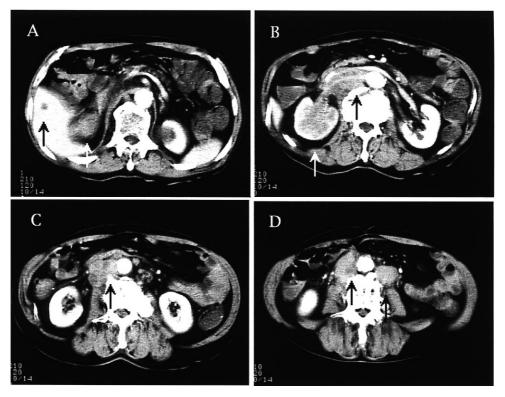
In this paper we describe our attempt to detect primary and metastatic lesions in a patient with renal pelvic tumor (transitional cell carcinoma) using <sup>18</sup>F-FDG PET.

## **CASE REPORT**

A 77-year-old man was admitted with low abdominal

E-mail: nw31456@ms.toyama-mpu.ac.jp

pain. Physical examination showed a hard mass in the right abdomen. Urinary examination revealed macroscopic hematuria. CT was performed to evaluate the palpable mass in the right abdomen. Enhanced CT revealed a hypo-enhanced pelvic tumor extending to the renal cortex with multiple enlarged lymph nodes in the bilateral paraaortic areas and a small nodule in the liver (Fig. 1). Transitional cell carcinoma was proven by biopsy from the renal pelvic tumor, which was noted on enhanced CT.


<sup>18</sup>F-FDG PET imaging was also performed. We obtained PET scans with a Siemens EXACT HR<sup>+</sup> scanner (Siemens/CTI, Knoxville, TN, USA). We asked a patient to fast for 6 h beforehand. A whole-body acquisition started 60 min after injection of 185 MBq <sup>18</sup>F-FDG. Emission data were collected at 5 min per bed position for 45 min with no attenuation collection. <sup>18</sup>F-FDG PET findings were visually correlated with those of subsequent CT. <sup>18</sup>F-FDG PET imaging revealed abnormal increased uptake of the right renal pelvic tumor extending to the renal cortex with liver metastasis and paraaortic lymph node metastases (Fig. 2).

#### DISCUSSION

Primary tumors of the renal pelvis are uncommon. Transitional cell carcinoma accounts for approximately 90% of all cancers of the renal pelvis. Eighty-five to 95% of

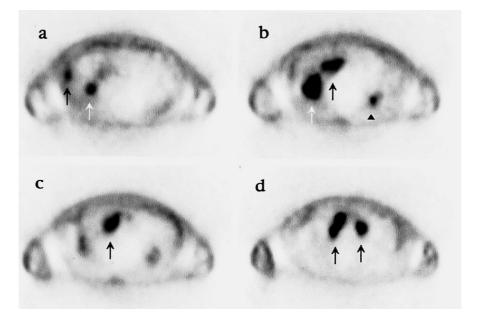
Received August 4, 2003, revision accepted December 26, 2003.

For reprint contact: Naoto Watanabe, M.D., Department of Radiology, Toyama Medical and Pharmaceutical University, Sugitani 2630, Toyama 930–0194, JAPAN.



**Fig. 1** Enhanced CT revealed a hypo-enhanced right pelvic tumor extending to the renal cortex (*white arrows* in A and B) with liver metastasis (*black arrow* in A) and paraaortic lymph node metastases (*black arrows* in B, C, and D).

uroepithelial carcinomas are transitional cell tumors, approximately 10% are squamous cell carcinomas, and less than 1% are adenocarcinomas. The clinical presentation of transitional cell carcinoma of the renal pelvis is non-specific making the radiologic evaluation critical for both initial detection and subsequent evaluation and disease monitoring.<sup>2</sup> CT provides excellent detail of the kidney and urinary tract. CT is also useful in determining the site of origin of a lesion. Differentiation of transitional cell carcinoma from renal cell carcinoma is aided by the less marked enhancement of a transitional cell tumor as opposed to hypervascular renal tumors.<sup>2</sup> In our case, a renal pelvic tumor with multiple metastases was noted on enhanced CT.


<sup>18</sup>F-FDG has been demonstrated to have affinity for a variety of malignant tumors.<sup>3</sup> Recently Ramdave et al. reported that <sup>18</sup>F-FDG PET accurately detected local disease spread and metastatic disease in patients with renal cell carcinoma. They suggested that <sup>18</sup>F-FDG PET may have a role in the diagnostic evaluation of patients with renal cell carcinoma preoperatively and staging of metastatic disease.<sup>4</sup> Kosuda et al. showed the feasibility of <sup>18</sup>F-FDG PET for transitional cell carcinoma of the bladder.<sup>5</sup> These results suggested that <sup>18</sup>F-FDG may accumulate in transitional cell carcinoma of the renal pelvis. To our knowledge, only one case of <sup>18</sup>F-FDG tumor uptake in renal pelvic tumor has been described in pilot

human studies.6

<sup>18</sup>F-FDG PET imaging was performed in a patient with renal pelvic tumor with liver metastasis and paraaortic lymph node metastases detected on CT. The excretory route of <sup>18</sup>F-FDG in the urine results in physiological distribution of <sup>18</sup>F-FDG in the kidney and collecting system, making the detection of renal tumors more challenging than that of tumors located elsewhere.<sup>7</sup> It has been shown that the visual correlation of PET with CT can improve the accuracy of PET alone.8 In our case, abnormal increased uptake of <sup>18</sup>F-FDG in renal pelvic tumor, liver metastasis and paraaortic lymph node metastases was demonstrated clearly with visual correlation of PET with CT. Moreover, Ma et al. reported that an additional 3 hour scan is helpful for the detection of paraaortic lymph node metastases.<sup>9</sup> However, in our case delayed scan was not performed.

# CONCLUSION

We succeeded in demonstrating uptake by a renal pelvic tumor (transitional cell carcinoma) with liver metastasis and paraaortic lymph node metastases using <sup>18</sup>F-FDG PET imaging. These results suggested that <sup>18</sup>F-FDG PET imaging may be a useful modality to detect primary and metastatic lesions of renal pelvic tumors (transitional cell carcinoma).



**Fig. 2** Axial images of <sup>18</sup>F-FDG PET obtained at same levels as A, B, C, and D respectively, revealed abnormal increased uptake of the right renal pelvic tumor extending to the renal cortex (*white arrows* in a and b) with liver metastasis (*black arrow* in a) and paraaortic lymph node metastases (*black arrows* in b, c and d). Physiological uptake of the left renal pelvis was shown (*arrowhead* in b).

#### ACKNOWLEDGMENT

The authors wish to thank John S. Gelblum for his kind assistance in preparing the manuscript.

## REFERENCES

- Catalona WJ, Messing EM. Urothelial tumors of the renal pelvis and ureter. In: Walsh PC, Retic AB, Vaugham ED, et al., eds. *Campbell's urology*, *7th ed*. Philadelphia; WB Saunders, 1988: 2383–2410.
- 2. Leder RA, Dunnick NR. Transitional cell carcinoma of the pelvicalices and ureter. *AJR* 1990; 155: 713–722.
- 3. Strauss LG, Conti PS. The applications of PET in clinical oncology. *J Nucl Med* 1991; 32: 623–648.
- 4. Ramdave S, Thomas GW, Berlangieri SU, Bolton DM, Davis I, Danguy HT, et al. Clinical role of F-18 fluorodeoxyglucose positron emission tomography for detection and management of renal cell carcinoma. *J Urol* 2001; 166: 825–830.
- 5. Kosuda S, Kison PV, Greenough R, Grossman HB, Wahl

RL. Preliminary assessment of fluorine-18 fluorodeoxyglucose positron emission tomography in patients with bladder cancer. *Eur J Nucl Med* 1997; 24: 615–620.

- Wahl RL, Harney J, Hutchins G, Grossman HB. Imaging of renal cancer using positron emission tomography with 2deoxy-2-(<sup>18</sup>F)-fluoro-D-glucose: pilot animal and human studies. *J Urol* 1991; 146: 1470–1474.
- Hubner HF. Gynecologic and genitourinary. Wahl RL, ed. *Principles and Practice of Positron Emission Tomography*. Philadelphia, USA; Lippincott Williams & Wilkins, 2002: 234–245.
- Vansteenkiste JF, Stroobants SG, Dupont PJ, De Leyn PR, De Wever WF, Verbeken EK, et al. FDG-PET scan in potentially operable non-small cell lung cancer: do anatometabolic PET-CT fusion images improve the localisation of regional lymph node metastases? The Leuven Lung Cancer Group. *Eur J Nucl Med* 1998; 25: 1495–1501.
- Ma SY, See LC, Lai CH, Chou HH, Tsai CS, Ng KK, et al. Delayed <sup>18</sup>F-FDG PET for detection of paraaortic lymph node metastases in cervical cancer patients. *J Nucl Med* 2003; 44: 1775–1783.