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DESPITE RECENT DEVELOPMENTS in therapeutic options, heart
failure due to coronary artery disease (CAD) continues to
be one of the leading causes of morbidity and mortality in
many countries, including Japan. It is well known that left
ventricular dysfunction is not necessarily an irreversible
process; dysfunctional but viable myocardium has the
potential to recover in function after restoration of myo-
cardial blood flow by either coronary arterial bypass
grafting (CABG) or percutaneous coronary intervention
(PCI), whereas scarred tissue will not recover even after
revascularization.1 Therefore, substantial efforts have
been made to differentiate such potentially reversible, and
hence viable myocardium from scar. Furthermore, it has
also been reported that patient selection based on the
presence and extent of tissue viability identifies patients
who are at low risk for serious perioperative complica-
tions associated with CABG.2 Nuclear imaging tech-
niques using either PET3,4 or SPECT5,6 have played a

major role in this field. This review describes the basic
physiology of dysfunctional but viable myocardium, and
the current applications of scintigraphic approaches for
the noninvasive characterization of viable and scarred
myocardium.

Pathophysiology Underlying Reversible Dysfunction
It is known that chronically dysfunctional but viable
myocardium may represent hibernation, repetitive stun-
ning, or both. Hibernating myocardium, which was first
described by Rahimtoola,7 represents impaired contrac-
tile function coupled with reduced myocardial blood flow
at rest that would recover after restoration of flow. Stun-
ning, on the other hand, represents impaired contractile
function that persists after an ischemic episode despite
restoration of blood flow.8 The differentiation of these
situations is complicated because they may often coexist
in the clinical setting. Furthermore, several clinical stud-
ies9,10 have shown that myocardial blood flow in hibernat-
ing myocardium is, in fact, not reduced and is often within
the normal or near normal range, suggesting that repeti-
tive stunning rather than hibernation plays a major role in
such chronically dysfunctional but viable myocardium.
Prior studies by Bax et al.11 and Haas et al.12 have sug-
gested that stunned myocardium is likely to show early
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functional recovery after revascularization, whereas hi-
bernating myocardium may take a longer time period to
recover. It is also noteworthy that contractile reserve to
dobutamine infusion is more common in normally per-
fused (stunned) myocardium than in hypoperfused yet
viable (hibernating) myocardium.13 Additionally, the tim-
ing of revascularization after the onset of hibernation may
also be an issue, because progressive cellular degenera-
tion in hibernating myocardium may reduce the chance
for complete structural and functional recovery after
restoration of blood flow.14 Thus, much work still needs
to be done for more comprehensive understanding of
dysfunctional but viable myocardium.

What Is the Gold Standard for Viability Studies?
The choice of gold standard or reference technique for
viability is an issue in most published studies. There have
been many endpoints proposed for viability tests, includ-
ing metabolic activity measured by 18F-fluorodeoxyglu-
cose (FDG) PET,15 histological examination of biopsied
tissue,16 regional or global functional recovery,3,17–20

symptom improvement,21,22 and improved survival.23,24

From a pathophysiological view point, biological signals
by PET or histological examinations should certainly
provide important insights into viability at the cellular or
molecular level. Regional or global functional recovery
after restoration of blood flow is also relevant because this
is directly associated with the definition of stunned or
hibernating myocardium. From a clinical standpoint, on
the other hand, improved survival and symptoms associ-
ated with revascularization would be the optimal endpoint
of viability tests, because this is the main goal of revas-
cularization procedures. However, such prognostic infor-
mation is not always available, because some patients
may drop out during the follow-up period usually for
years. Furthermore, the magnitude of improvement in
symptoms may sometimes be difficult to measure in an
objective manner. Perhaps, the global improvement of
left ventricular function after revascularization is the best
alternative, because this is easy to measure and, is likely
to be associated with improved prognosis.22

Table 1   PET tracers used for assessing myocardial viability

Mechanism Imaging procedure Index of viability
18F-FDG Glucose utilization Static/Dynamic Relative uptake
11C-Acetate Oxidative metabolism Dynamic Clearance rate (Kmono)
13N-Ammonia Flow/Metabolic trapping Dynamic/Static Flow/Retention
15O-Water Flow/Diffusion Dynamic Flow/Perfusable tissue index
82Rb Flow/Membrane integrity Dynamic Flow/Clearance rate

A

B

Fig. 1    (A) Short-, sagittal-, and horizontal-axis tomograms of
13N-ammonia (upper) and 18F-FDG (lower) PET from a patient
with prior anterior myocardial infarction. Reduced perfusion
associated with preserved FDG uptake (flow-metabolism mis-
match) is noted in the antero-septal wall, indicating viable
tissue. (B) Short-axis MRI images from the same patient before
(upper) and after (lower) revascularization by percutaneous
coronary intervention (PCI). As expected from the results of
PET study, a remarkable improvement in regional wall thicken-
ing is noted in the antero-septal wall.
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PET
The clinical utility of PET imaging to identify viable
tissue was first described by Tillisch et al. in the middle
1980’s.3 PET has several technical advantages over SPECT
such as higher counting sensitivity, higher spatial resolu-
tion, and routine use of attenuation correction. Until now,
there have been a number of PET studies, most of which
used 18F-FDG as a metabolic marker of viability, in the
literature,2–4,17,19,23,25 and thus PET serves as a metabolic
gold standard for tissue viability. As summarized in Table
1, there are several PET tracers that can be used for
assessing viability.

Metabolic Imaging
18F-FDG
Free fatty acids, glucose, and lactate are the major energy
sources for the heart.26–28 Fatty acids play a major role in
the metabolism of the normoxic heart, whereas glucose
becomes the major substrate for the myocardium under
ischemic conditions.29–31 Therefore, PET imaging using
metabolic tracers such as 18F-FDG enables detection of
metabolic changes at the cellular level associated with
ischemia. As demonstrated in Figure 1, the preserved or
increased glucose utilization, and hence 18F-FDG uptake
in hypoperfused and dysfunctional myocardium (flow-
metabolism mismatch) is regarded as a metabolic marker
of cell survival and viability, whereas concordant reduc-
tion in both blood flow and 18F-FDG uptake is indicative
of scar. Thus, 18F-FDG PET provides a biological signal
on cellular viability, and is considered to be one of the
most accurate noninvasive techniques to identify viable
tissue, as supported by a number of studies using
PET.2–4,17,19,23,25 From a prognostic viewpoint, it is impor-
tant to note that the surgical revascularization of hiber-
nating myocardium leads to a decreased mortality rate
compared with medical treatment, whereas revasculariza-
tion of irreversibly injured myocardium does not prevent
further decline in function.23,25

In clinical practice, 18F-FDG PET is often combined
with flow tracers such as 13N-ammonia to assess myocar-
dial perfusion. Although 18F-FDG PET imaging without
flow tracer may work with reasonable sensitivity and
specificity for detecting viable tissue,32 flow/metabolism
combination would provide more comprehensive infor-
mation on viability and herein the differentiation of hiber-
nation from stunning.11,12,33

Image interpretation is often performed visually, and
relies on relative regional uptake of 18F-FDG.17 Absolute
quantitation of regional myocardial glucose utilization
using dynamic imaging does not appear to enhance the
diagnostic accuracy of 18F-FDG PET to detect viable
myocardium,34 probably because of high variability in
glucose utilization rates in individual patients. Thus,
relative 18F-FDG uptake is clinically sufficient for this
purpose.

11C-Acetate
Although 18F-FDG is the most established metabolic
tracer for tissue viability, 18F-FDG may not be suitable for
use in acute myocardial infarction due to inflammatory
cell accumulation in necrotic tissue, which takes up 18F-
FDG as does viable tissue.35–37 Furthermore, myocardial
18F-FDG uptake is influenced by multiple factors such as
serum glucose, free fatty acids, and insulin levels. Ac-
etate, on the other hand, enters the TCA cycle and its
clearance rate represents cellular oxidative metabolism
independent of the factors affecting 18F-FDG uptake.28

Because preserved oxidative metabolism is essential for
viable cells, its clearance rate can be used as a marker of
viability. Several clinical studies have demonstrated the
utility of 11C-acetate for assessing myocardial viabil-
ity,38–41 particularly in patients with acute myocardial
infarction. Additionally, a recent study by Hata et al.42

suggests that the use of low-dose dobutamine at the time
of tracer injection further improves the delineation of
reversible and irreversible dysfunction.

A potential disadvantage of 11C-acetate as a viability
tracer, however, is the necessity for dynamic imaging and
calculation of k-mono to differentiate viable from scarred
tissue. Thus, unlike 18F-FDG, a simple visual interpreta-
tion of static image is not possible for this tracer. Another
disadvantage is the necessity for an on-site cyclotron for
production of 11C, which has a relatively short physical
half-life of 20 minutes. For these reasons, although the
results as to the utility of this tracer as a viability marker
are promising, 11C-acetate has not gained wide clinical
acceptance at present.

Flow Tracers
Flow measurement using PET also provides information
on cellular viability.43 In particular, unlike SPECT, abso-
lute quantitation of myocardial blood flow is feasible
using PET and tracer kinetic models.44,45 The myocardial
blood flow itself is a marker of viability because viable
tissue requires a blood supply to be alive.43 Additionally,
it is of note that flow is often within the normal or near
normal range in dysfunctional but viable myocardium,9,10

suggesting that the majority of reversible dysfunction
represents repetitive stunning rather than hibernation.

13N-Ammonia
The suitability of 13N-ammonia as a myocardial flow
tracer is established in numerous studies.44,46–52 Uptake of
13N-ammonia depends on both perfusion and metabolic
retention. Therefore, 13N-ammonia retention in the myo-
cardium should reflect tissue viability. This concept was
tested by Kitsiou et al.53 demonstrating that 13N-ammonia
retention rather than absolute myocardial blood flow was
a good marker of cellular viability. Nevertheless, whether
metabolic tracers such as 18F-FDG are necessary for more
accurate delineation of viable tissue remains to be deter-
mined by further studies.54
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15O-Water
Unlike 13N-ammonia, 15O-water distributes into the water
spaces of both the myocardium and blood. In theory, 15O-
water is considered to be an ideal tracer for measurement
of myocardial blood flow without plateau effect at high
flow rates.45,55 However, methodological complexity re-
lated with this tracer (e.g., necessity for subtraction of
blood pool activity) together with very short physical
half-life may cause heterogeneity of flow measurements,
as demonstrated by Nitzsche et al.56 A unique feature of
15O-water PET imaging is that the proportion of the total
anatomical tissue that is capable of rapidly exchanging
water (water perfusable tissue index, PTI) can be used as
a marker of tissue viability.57,58 Although much work
needs to be done before its clinical utility is determined,
this technique appears to provide unique information on
tissue viability.

82Rb
Rubidium-82 is a generator produced positron emitting
tracer to measure myocardial blood flow.59 It is actively
transported into myocardium by sodium-potassium de-
pendent transmembranous ion exchange system in a
manner similar to 201Tl.60 Therefore, its cellular kinetics
represent membrane integrity and hence, viability. Al-
though this concept has not been extensively validated, a
study by vom-Dahl et al.59 showed that tissue half-lives of
82Rb significantly differ between viable and scar tissue.

SPECT
Although PET imaging is an established technique to
distinguish viable from scarred myocardium as described
above, its limited availability and high cost pose limita-
tions for widespread use in clinical practice. Therefore,
substantial efforts have been made to develop SPECT
techniques for viability assessment, which are less expen-
sive and more widely available. As shown in Table 2,
there are several single-photon emitting tracers available
that can be used for assessing myocardial viability.

201Tl
201Tl is taken up by myocardial cells by active transport
and is dependent on myocardial blood flow.60 Therefore,

myocardial 201Tl uptake represents both myocardial per-
fusion and cellular viability. It has been shown that 3–4
hour delayed imaging after stress injection of 201Tl fre-
quently underestimates the presence of viable myocar-
dium within persistent defects as evidenced by metabolic
imaging with 18F-FDG PET.61 Modified 201Tl protocols
such as late redistribution imaging after stress injec-
tion62,63 or reinjection technique6,64 have been shown to
enhance the detection of viable myocardium. In particu-
lar, reinjection imaging protocol is currently widely used
for this purpose, and has been found to be equivalent to
18F-FDG PET in most circumstances, although viability
in some myocardium may be underestimated by 201Tl as
compared with 18F-FDG PET.64

Rest-redistribution 201Tl imaging is another established
diagnostic protocol for the detection of such viable, but
compromised, myocardium.5 Initial distribution of 201Tl
is considered to reflect myocardial blood flow at rest, and
redistribution 201Tl imaging to reflect myocardial viabil-
ity rather than mere perfusion. Thus, rest-redistribution
protocol is used when the question being addressed is
solely myocardial viability and not stress induced is-
chemia. Unlike stress 201Tl, late redistribution imaging
after rest injection may not be necessary for this pur-
pose.65 When rest-redistribution 201Tl imaging is com-
pared with reinjection imaging after stress, both protocols
seem to provide equivalent results as to viability when
regional 201Tl activity on the final image is considered as
a marker of viability.8 However, the presence and extent
of stress induced ischemia gives more relevant informa-
tion than viability in the majority of CAD patients. Fur-
thermore, a recent study66 has shown that stress induced
reversible defects, which are more commonly seen on
stress imaging than on rest imaging, are highly predictive
of functional recovery after revascularization. Thus, the
use of stress imaging protocol is encouraged whenever
possible.

Images are usually interpreted visually, but quantitation
of regional tracer uptake within the dysfunctional myo-
cardium provides more objective and accurate results as
to tissue viability than visual assessment.67

Table 2   SPECT tracers used for assessing myocardial viability

Mechanism Imaging procedure Index of viability
201Tl Flow/Membrane integrity Stress-Redistribution-

    Reinjection Defect reversibility/Relative uptake
    Rest-Redistribution

99mTc-Sestamibi Flow/Mitochondrial membrane
    integrity Stress-Rest/Rest Defect reversibility/Relative uptake

99mTc-Tetrofosmin Flow/Mitochondrial membrane
    integrity Stress-Rest/Rest Defect reversibility/Relative uptake

123I-BMIPP Fatty Acid uptake Rest Reduced uptake compared with flow
18F-FDG Glucose utilization Rest Relative uptake
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99mTc-Labeled Flow Tracers
Technetium-99m labeled flow tracers such as 99mTc-
sestamibi and 99mTc-tetrofosmin are now widely avail-
able as alternatives to conventional 201Tl. As compared
with 201Tl, these 99mTc-labeled agents yield higher image
quality, but the diagnostic performance of these tracers
for detection of CAD is offset by underestimation of flow
at high flow rates.68,69 A more important characteristic
of these tracers is that, unlike 201Tl, they do not show
significant redistribution over time, and therefore there
have been controversies regarding the use of 99mTc-
labeled agents as a viability tracer.70 In experimental
studies, however, myocardial retention of both 99mTc-
sestamibi and 99mTc-tetrofosmin requires cellular viabil-
ity as demonstrated by Takahashi et al.71 Perhaps due to
the lack of redistribution and underestimation of flow at
high flow rates, both stress-rest 99mTc-sestamibi and 99mTc-
tetrofosmin underestimate defect reversibility as com-
pared with stress-reinjection 201Tl.72,73 However, regional
99mTc-sestamibi18 or 99mTc-tetrofosmin20  activity closely
correlates with that of 201Tl as illustrated in Figure 2,
indicating that quantitation of tracer uptake may be used

as a marker of viability. Furthermore, Udelson et al.18

described the utility of 99mTc-sestamibi for the prediction
of functional recovery after revascularization, which was
comparable to that of 201Tl, in severe CAD patients.
Similar results have been reported for 99mTc-tetrofosmin,
a newer  99mTc-lebeled flow tracer. In a study by Matsunari
et al.,20  99mTc-tetrofosmin uptake also predicted func-
tional recovery as did rest injected 201Tl. These data were
further confirmed by subsequent studies.74,75 Thus,
quantitation of tracer uptake of 99mTc-sestamibi or 99mTc-
tetrofosmin provides useful information on viability as
does conventional 201Tl.

123I-BMIPP
123I-beta-methyl iodophenyl pentadecanoic acid (BMIPP)
is a fatty acid analog that is not metabolized by beta-
oxidation,76 and its clinical utility has been extensively
investigated particularly in Japan and Europe. Because
myocardial fatty acid uptake is easily depressed in is-
chemic but viable myocardium,77 BMIPP imaging in
combination with flow tracer such as 201Tl or 99mTc-
sestamibi can also detect potentially reversible myocar-
dium. As demonstrated by Taki et al.78 and others,79,80 a
discordant BMIPP uptake less than perfusion tracer up-
take (Fig. 3) is considered to be a marker of functional
recovery after revascularization. However, whether
BMIPP imaging combined with perfusion tracer has any
advantage over perfusion tracer alone for the detection of
compromised but viable myocardium remains to be elu-
cidated in a large patient cohort, although initial results
are promising.81

18F-FDG SPECT
18F-FDG SPECT with ultra-high energy collimators for
511 KeV acquisition has emerged as an alternative to PET
for the assessment of myocardial viability.82 Despite the
limited spatial resolution and counting sensitivity of
SPECT compared to PET, several clinical studies have
shown that 18F-FDG SPECT offers diagnostic informa-
tion similar to PET, and compares favorably with other
imaging modalities, including rest-redistribution,83 stress-
reinjection 201Tl imaging,84 or low dose dobutamine
echocardiography.84 As with PET studies, metabolic ac-
tivity measured by 18F-FDG SPECT is interpreted in
combination with flow tracer. For this purpose, a dual-
isotope simultaneous acquisition (DISA) protocol with
18F-FDG and 99mTc-perfusion tracer is attractive because
it enables assessment of myocardial glucose utilization
and perfusion in a single study85–87 (Fig. 4). Another
potential advantage of this protocol is that ECG-gating to
assess left ventricular function is feasible. Thus, DISA
SPECT has the potential to assess myocardial glucose
utilization, perfusion, and function in a single study.

Fig. 2   Scatter plots showing correlation of quantitative regional
tracer activities between rest-redistribution 201Tl and rest 99mTc-
tetrofosmin imaging. (From Matsunari I, Fujino S, Taki J, et al.
Quantitative rest technetium-99m tetrofosmin imaging in pre-
dicting functional recovery after revascularization: comparison
with rest-redistribution thallium-201. J Am Coll Cardiol 1997;
29: 1226–1233. Reproduced with permission of the American
College of Cardiology.)

Fig. 3   123I-BMIPP (left) and 99mTc-tetrofosmin (right) images
from a patient with inferior myocardial infarction. A reduced
123I-BMIPP uptake less than 99mTc-tetrofosmin is noted in the
inferior wall.
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Recent Methodological Developments in SPECT Vi-
ability Studies
Nitrates
The use of nitrates at the time of tracer injection reportedly
enhances the diagnostic accuracy of viability tests using
flow tracers, as evidenced by several studies.88–90 In
particular, Sciagra et al.91 have found that nitrate induced
changes in 99mTc-sestamibi activity are an accurate marker
of potentially reversible myocardium, which was true for
both regional91 and global92 functional recovery. Further-
more, the prognostic value of nitrate enhanced 99mTc-
sestamibi imaging has been validated in another study by
this group.93 Thus, baseline-nitrate perfusion imaging
appears to be an attractive approach for assessing tissue
viability. One disadvantage of this protocol is the neces-
sity for two separate injections of the tracer, relatively
long time required for completion of the imaging proce-
dure.

Attenuation Correction
It is well known that attenuation artifacts may unfavor-
ably affect the diagnostic accuracy of cardiac SPECT
imaging. In particular, patients with severe left ventricu-
lar dysfunction, in whom the extent of viable myocardium
becomes an important issue for clinical decision making,
are likely to have an enlarged left ventricle, and are sus-
ceptible to diaphragmatic attenuation artifacts. Therefore,
the use of attenuation correction would improve the

accuracy of viability tests using SPECT techniques. This
hypothesis was confirmed by a recent study demonstrat-
ing that the use of attenuation correction significantly
improved the detection of viable myocardium by decreas-
ing false negatives in the inferior-septal region using 18F-
FDG PET as a reference technique for tissue viability,94

although this needs to be further validated in patients
undergoing revascularization.

Gated-SPECT
Recent developments in 99mTc-labeled myocardial perfu-
sion tracers and data processing95 have made ECG-gated
SPECT imaging part of the clinical routine in nuclear
imaging laboratories. Gated-SPECT may enhance the
diagnostic accuracy of the viability test by increasing
specificity.96,97 In particular, dobutamine stress gated
SPECT using 99mTc-labeled flow tracer provides infor-
mation on both perfusion and contractile reserve in a
single study as recently documented by Yoshinaga et
al.,98 who compared the accuracy of low-dose dobutamine
stress gated myocardial SPECT with the accuracy of
dobutamine stress echocardiography and resting perfu-
sion SPECT for the identification of viable myocardium
in patients with previous myocardial infarction. Because
SPECT is more objective and reproducible than echo-
cardiography, gated-SPECT with pharmacological inter-
vention may become an indispensable diagnostic tool
for viability testing.

Non-Nuclear Imaging Techniques
There are several non-nuclear imaging techniques that
can be used for the detection of viable tissue. Each of them
has its own advantages and disadvantages as compared
with nuclear imaging.

Echocardiography
Contractile reserve assessed by low-dose dobutamine
echocardiography is a currently well accepted marker of
tissue viability.67,99–102 When the results of dobutamine

Fig. 5    99mTc-sestamibi (upper) and 18F-FDG SPECT (lower)
images acquired simultaneously from a patient with inferior
myocardial infarction. A reduced perfusion associated with
preserved 18F-FDG uptake (flow-metabolism mismatch) is noted.

Fig. 4    The non-attenuation corrected (NC) 99mTc-tetrofosmin
images (left), attenuation corrected (AC) 99mTc-tetrofosmin
images (center) and positron emission tomography with 18F-
FDG (right) from a patient with 3-vessel coronary artery dis-
ease. (From Matsunari I, Böning G, Ziegler SI, et al. Attenua-
tion-corrected 99mTc-tetrofosmin single-photon emission
computed tomography in the detection of viable myocardium:
comparison with positron emission tomography using 18F-
fluorodeoxyglucose. J Am Coll Cardiol 1998; 32: 927–935.
Reproduced with permission of the American College of Cardi-
ology.)
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echocardiography are compared with those of nuclear
imaging, echocardiography generally has higher specificity
but somewhat lower sensitivity as compared with 201Tl
imaging.103

Magnetic Resonance Imaging
Magnetic resonance imaging (MRI) is another potent
diagnostic tool for myocardial viability assessment. It can
assess contractile reserve as does dobutamine echocar-
diography in a more objective manner.15 Furthermore,
delayed enhancement using contrast media seems to be
a reliable marker for scar tissue as compared with 201Tl
imaging104 or PET.105 At present, however, clinical ex-
perience with MRI is limited, and therefore clinical
trials especially involving patients undergoing revascu-
larization need to be done before its utility is determined.

Sequential Strategy Using Multi-Modalities
Although one imaging technique has advantages and
disadvantages over other techniques as described earlier,
this can be improved by combining two or more imaging
modalities. This concept was recently tested in a study by
Bax et al.106 demonstrating that the combination of 201Tl
and dobutamine echocardiography in a subset of patients
significantly improved overall accuracy of the test, sug-
gesting that these diagnostic techniques may work in a
complementary fashion. It should be noted that the se-
quential strategy requires two or more diagnostic tests
performed in patients, and therefore is more expensive
than performing one test alone. Therefore, the question to
be addressed in further studies is whether the additional
costs imposed by the sequential test are offset by the
improved diagnostic accuracy.107

CONCLUSION

Accurate assessment of myocardial viability continues to
be an important issue for clinical decision making in
patients with CAD and left ventricular dysfunction. Nuclear
imaging using either SPECT or PET has played a major
role for identification of such viable myocardium as
described in this review. Recently, however, other imag-
ing techniques such as dobutamine echocardiography
have emerged as competitors to nuclear imaging. It is
noteworthy that they sometimes may work in a comple-
mentary fashion to nuclear imaging, indicating that an
appropriate use of these techniques may significantly
improve the overall accuracy. On the other hand, reim-
bursement for cardiac metabolic imaging using 18F-FDG
PET has recently been approved by the Ministry of
Health, Labour and Welfare in Japan, which would pro-
mote more wide-spread use of PET imaging in clinical
practice. Thus, the circumstances surrounding nuclear
imaging as a viability test are changing dynamically.
Keeping these factors in mind, more efforts are necessary
to further enhance the diagnostic performance of nuclear

imaging as a reliable, indispensable viability test for
clinical decision making.
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