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INTRODUCTION

DEMENTIA is a major burden for many countries where life
expectancy is continuously growing and the proportion of
aged people is rapidly growing. The devastating impair-
ment of cognitive functions in dementia is the conse-
quence of a severe loss of functioning synapses and
neurons in the brain, in particular in limbic and neocortical
association areas. Effective treatment is eagerly awaited.
Some drugs that have a moderate symptomatic effect,
such as the choline esterase inhibitors, are already avail-

able and some studies indicate that they are able to
postpone progression by several months. Drugs inhibit-
ing inflammation that is associated with Alzheimer plaques,
and drugs targeted against specific proteins that cause or
contribute to amyloid deposition in the brain are currently
being developed and tested. In any case, efficient treat-
ment needs to be installed before a large number of
synapses and neurons have been damaged irreversibly,
and therefore early diagnosis of dementia is of utmost
importance, but currently is far from being routine prac-
tice in medicine. It is difficult clinically to distinguish
between memory deficits that may still be consistent with
benign aging and the very beginning of Alzheimer disease
(AD) which would urgently need effective treatment to
avoid irreversible brain damage. Thus techniques to di-
agnose AD at a very early stage, when neuroprotective
treatment would still have the chance to maintain the
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Measurement of local cerebral glucose metabolism (lCMRGlc) by positron emission tomography
(PET) and 18F-2-fluoro-2-deoxy-D-glucose (FDG) has become a standard technique during the past
20 years and is now available at many university hospitals in all highly developed countries. Many
studies have documented a close relation between lCMRGlc and localized cognitive functions, such
as language and visuoconstructive abilities. Alzheimer’s disease (AD) is characterized by regional
impairment of cerebral glucose metabolism in neocortical association areas (posterior cingulate,
temporoparietal and frontal multimodal association cortex), whereas primary visual and sensori-
motor cortex, basal ganglia, and cerebellum are relatively well preserved. In a multicenter study
comprising 10 PET centers (Network for Efficiency and Standardisation of Dementia Diagnosis,
NEST-DD) that employed an automated voxel-based analysis of FDG PET images, the distinction
between controls and AD patients was 93% sensitive and 93% specific, and even in very mild
dementia (at MMSE 24 or higher) sensitivity was still 84% at 93% specificity. Significantly
abnormal metabolism in mild cognitive deficit (MCI) indicates a high risk to develop dementia
within the next two years. Reduced neocortical glucose metabolism can probably be detected with
FDG PET in AD on average one year before onset of subjective cognitive impairment. In addition
to glucose metabolism, specific tracers for dopamine synthesis (18F-F-DOPA) and for (11C-MP4A)
are of interest for differentiation among dementia subtypes. Cortical acetylcholine esterase activity
(AChE) activity is significantly lower in patients with AD or with dementia with Lewy bodies
(DLB) than in age-matched normal controls. In LBD there is also impairment of dopamine
synthesis, similar to Parkinson disease.
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essential cognitive functions, are crucial.1 In this review,
I will demonstrate that positron emission tomography
(PET) is technique that, although costly, has the potential
to serve this purpose.

Cerebral glucose metabolism (FDG)
The most commonly used and most widely available
tracer for PET is 18F-2-fluoro-2-deoxyglucose (FDG). Its
uptake in the brain reflects local glucose consumption
which is closely coupled to neuronal function because it
provides the energy to maintain ion gradients and to
synthesize neurotransmitters.2–4 In particular, glucose
metabolism is intimately linked to glutamate synthesis
and its recycling via the neuroglia.5 Thus, synaptic dys-
function and neuronal degeneration regularly lead to a
decline of glucose metabolism in the affected parts of the
brain. This has not only been observed in Alzheimer
disease, but also in a large number of other neurode-
generative diseases. Since many neurodegenerative
diseases have very distinct sites in the brain that are
primarily affected, whereas other parts of the brain are
spared at least at the early stages, these topographical
patterns that can be imaged with FDG PET provide
significant diagnostic clues (Table 1).

Meanwhile approximately 20 years have passed since
the first descriptions of the typical AD findings in FDG
PET.6 It has been noted from the beginning that the tem-
poro-parietal association cortex is most affected, with the
angular gyrus usually being located the center of the met-
abolic impairment, and frontolateral association cortex
is also involved frequently.7 These changes are different

from those of normal aging, which leads to predomi-
nantly mesial frontal metabolic decline and may cause
some apparent dorsal parietal (rather than temporo-pari-
etal) and fronto-temporal (perisylvian) metabolic reduc-
tion due to partial volume effects caused by atrophy.8,9

There may be a distinct hemispheric asymmetry, which
usually corresponds to the predominant cognitive deficits
(language impairment in the dominant, and visuospatial
disorientation in the sub-dominant hemisphere). Voxel-
based comparisons with normal reference samples clearly
showed that the posterior cingulate gyrus and the precu-
neus are also impaired early on.10 This is usually not
directly obvious by mere inspection of FDG PET scans
because metabolism in that area is above the cortical
average in normal brain,11 and with beginning impair-
ment it returns to the level of surrounding cortex but does
not stick out as a hypometabolic lesion. Thus, this impor-
tant diagnostic sign is easily missed by standard visual
interpretation of FDG PET brain scans. On the back-
ground of sufficient numbers of FDG PET scans in normal
controls it is more and more becoming standard to base
the interpretation of patient studies not merely on visual
interpretation of the tracer distribution, but on quantita-
tive mapping with reference to an appropriate normal
sample.12–15 These technical advances also overcome the
ambiguities of qualitative image interpretation and re-
duce the variance that is introduced by variable individual
experience and expertise of the physician.

Within a collaboration of nine institutions across Eu-
rope and one in Japan (Table 2), named “Network for
efficiency and standardisation of dementia diagnosis

Table 1   Characteristic FDG PET findings in neurodegenerative diseases

Disease Brain regions with reduced FDG uptake References

Alzheimer disease (AD) temporoparietal association cortex Reviews:
posterior cingulate cortex and precuneus (7, 10, 85)
variably also frontolateral association cortex

Dementia with Lewy bodies as in AD, plus primary visual cortex (58, 86, 87)
(LBD)

Frontotemporal dementia predominantly frontomesial, also (88–91)
(FTD) frontolateral and temporal

Parkinson disease cortical impairment similar to LBD (92–98)
possible (high uptake preserved in striatum)

Multiple system atrophy* putamen, brainstem, cerebellum, often also (99–103)
cerebral cortex

Progressive supranuclear palsy frontal, basal ganglia and midbrain (35, 37, 104, 105)

Corticobasal degeneration mainly parietal and central cortex, striatum and thalamus (35, 106–108)
possibly also frontal cortex
often very asymmetric

Spinocerebellar degeneration variable, depending on subtype, may be similar to MSA (38, 109, 110)

Chorea Huntington caudate nuclei, putamen, with progression (111–115)
also thalamus and cortex

*: including sporadic olivopontocerebellar atrophy and striatonigral degeneration
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(NEST-DD),” we performed a retrospective study in 639
FDG PET scans, including 109 normal controls, 396
patients with probable AD (according to NINCDS-
ADRDA criteria), and various other dementing diseases
and related disorders. The PET scans were processed in a
uniform manner by Gaussian filtering and spatial normal-
ization, as provided by the SPM’99 software package
(Welcome Institute, London), and were entered into a
common database. From this data base we developed an
algorithm to discriminate AD patients from controls that

includes adjustments to handle data stemming from scan-
ners with different spatial resolutions, and a correction for
age effects by linear regression. With this procedure,
discrimination between AD and controls was achieved
with 93% sensitivity and 93% specificity. Even when
limiting the analysis to very mild AD which could not
be diagnosed by the Mini Mental Status Examination
(MMSE) alone because these patients had scores of 24
(out of 30) or higher but required extensive additional
neuropsychological testing, sensitivity was still 83%,
maintaining 93% specificity.8 The procedure provides a
map of statistically abnormal brain areas in each patient
(Fig. 1) that can also be used in other diseases. It is
available for scientific evaluation by submission of FDG
PET scans (that were obtained under resting conditions
with eyes closed and ears unplugged 20–60 min after
tracer injection) to the consortium’s internet server (via
WWW.NEST-DD.ORG).

Diagnostic algorithms for FDG PET analysis have now
been developed further to also include discrimination of
AD from other types of dementia (publication in prepara-
tion). Diagnostic procedures will be cross-validated using
data from a prospective study conducted by the same
consortium, which closed patient recruitment in October
2002 and also comprises a large set of clinical and neuro-
psychological data, including CT or MRI, and molecular
tests.

Table 2   Institutes and principal investigators participating in
the European Network for Efficiency and Standardisation of
Dementia Diagnosis (NEST-DD)

University and Max-Planck-Institute Cologne, Germany,
K. Herholz

University Milano-Bicocca, Hospital San Raffaele, Milan,
Italy, D. Perani

University Liege, Cyclotron Research Centre, Liege,
Belgium, E. Salmon

INSERM Unit Caen, France, J.C. Baron
University Florence, Italy, S. Sorbi
University of Technology, Dresden, Germany, V. Holthoff
University Graz, Austria, F. Fazekas
University Frankfurt, Germany, L. Frölich
University Heidelberg, Germany, P. Schönknecht
National Institute of Longevity Sciences, Obu, Japan, K. Ito

Fig. 1   Age-adjusted t-map of a patient with mild AD, as described by Herholz et al.8 Significant voxels
(p < 0.05) are marked white, and maxima of connected clusters are marked by crosshairs. The t-sum-
AD is the sum of the t-values in all significant voxels within those brain regions that are typically affected
in AD. Its value of 17,639 in this patient clearly exceeds the normal range of t-sum-AD (95% confidence
limit 10,953) as determined in 109 normal controls, indicating that this scan is abnormal at an error
probability of 0.4%.
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Neuropathological studies indicate that neurodegen-
eration begins many years before the onset of clinical
AD.16 Memory impairment is the first clinical sign of
impending AD, but it is difficult to distinguish from more
benign forms of memory deficits, including the normal
decline of most memory functions with age. In recent
years, the concept of “mild cognitive deficit” (MCI) has
been developed by Petersen et al.,17 which in its core
refers to a type of memory deficit similar to AD, but
without the other criteria of AD (in particular, absence of
cognitive impairment in another cognitive domain). Thus,
it has been demonstrated that MCI often precedes AD,
with a conversion rate from MCI to AD of approximately
10–15% per year.17 With this low conversion rate and the
lack of clear differentiation from benign and reversible
forms of memory impairment, the diagnosis is of limited
clinical use.

Data are accumulating that FDG PET can provide a
much better prediction of rapid conversion from MCI to
clinical dementia of Alzheimer type than the clinical
criteria. In a longitudinal study, we studied patients with
mild cognitive deficits, mostly limited to the memory
domain, with MMSE scores of 24 or higher and not yet
fulfilling the criteria of probable AD.18 They were there-
fore diagnosed as “possible AD,” and most of these
patients would have fulfilled the criteria of MCI (which
were not yet used by us at that time). We found that 60–
70% of those patients who already had moderate or severe
metabolic impairment of association cortices in FDG PET
declined on MMSE by 3 points or more within 2 years
(mostly leading to clinical dementia), whereas only 10–
20% of patients without such metabolic impairment had
that decline19 (Fig. 2). More recently, the predictive value
of PET for imminent conversion to AD has been con-
firmed in MCI.20,21 These observations also correspond to

group studies that have shown abnormal metabolism in
association cortices in elderly asymptomatic patients at
high genetic risk for AD.22–24 These studies also suggest
that mesial temporal (entorhinal) metabolism is reduced
very early in apolipoprotein E4 positive individuals, but
that has not generally been confirmed. In our experience,
mesial temporal lobe metabolism is not preferentially
reduced in most cases of AD. It rather seems that the well-
known mesial temporal lobe atrophy in AD that is best
detected on MRI is correlated with remote metabolic
deficits in temporo-parietal and frontal association cortex
and in the posterior cingulate cortex.25 Back-extrapola-
tion of the progression of the metabolic impairment from
a sample of 47 own AD patients indicated that the typical
reduction of FDG uptake in association cortex can be
detected on average one year before onset of clinical
symptoms as noted by the patient (unpublished data).
Thus, FDG PET is useful for early diagnosis of AD.

Depression is the most important clinical condition that
can lead to memory impairment without dementia. There-
fore, depression in old age may be difficult to differentiate
from beginning AD, and it has even been reported that
depression in old age is a risk factor for dementia.26

Since treatment of depression and AD is essentially dif-
ferent, and many antidepressants have anticholinergic
side effects that are particularly unwelcome in AD with its
intrinsic cholinergic deficit, better tools for diagnostic
differentiation are needed. With FDG PET, depression is
associated with global reduction of cerebral glucose me-
tabolism, with some accentuation in the frontal lobe.27,28

Present data indicate that the metabolic alterations in
depression are distinct from those in AD.29,30  Yet, data are
still preliminary at this stage, and it remains to be seen
whether we can identify a subgroup of patients with
clinical depression who have a high risk for conversion to
AD.

Frontotemporal dementia (FTD) is characterized clini-
cally by leading changes in personality and behavior, such
as apathy or disinhibition, whereas memory impairment
may be absent or less prominent.31 There are no unique
histopathological characteristics of FTD, which is the
main manifestation of so-called Pick complex32 that in-
cludes also primary progressive aphasia and semantic
dementia. Clinical differentiation from AD is usually not
very difficult, but FTD is usually not diagnosed at an early
stage because mild symptoms are difficult to verify objec-
tively. FTD often is associated with severe impairment of
language production, and there are even variants such as
semantic dementia and primary progressive aphasia, where
the language disorder is the leading symptom and demen-
tia may be missing (at least at the beginning).33 Familial
FTD may be associated with parkinsonism and with
mutations in the tau gene on chromosome 17.34 In prin-
ciple, FTD is identified easily on FDG PET scans by a
distinct frontal or fronto-temporal metabolic impairment.
It seems, that FTD can also be differentiated from

Fig. 2   Frequency of clinical deterioration in patients with
cognitive deficits and suspected AD, but not yet fulfilling the
NINCDS-ADRDA criteria for probable AD with MMSE 24 or
higher. Frequency is low in patients with normal (n) or mildly
abnormal (+) FDG PET at entry, but is high with moderately
(++) and severely abnormal (+++) FDG PET as defined by a
metabolic ratio of 0.8 or less (modified from Herholz et al.29).
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corticobasal degeneration with predominant parietal meta-
bolic reduction,35 although histopathological features may
overlap.36 Yet, frontal metabolic impairment is also part
of many other diseases and conditions, including progres-
sive supranuclear palsy (in combination with midbrain
impairment),37 spino-cerebellar atrophy,38 and cocaine
abuse.39 There are also cases with combinations of frontal
and temporo-parietal metabolic impairment which could
represent either AD or FTD, and there are not yet sufficient
studies to provide reliable numbers on the accuracy of
differentiation.

Diagnosis of vascular dementia (VD) is a difficult issue
because there is not yet a consensus about clinical criteria,
and correspondence between existing criteria (e.g., ICD-
10, DSM-IV, NINDS-AIREN, CAMDEX) is poor.40,41

The frequency of pure vascular dementia is low in most
European and American autopsy series,42 but seems to be
considerably higher in Japan.43 Because cerebral arterio-
sclerosis is frequently present also in elderly subjects with
AD (but also in elderly subjects without dementia), and
cerebrovascular lesions are detected with high sensitivity
on MRI (on T2-weighted images, with or without fluid
signal suppression), whereas structural imaging provides
no specific signs of AD, there may be a clinical tendency
to diagnose VD based on the MRI findings too frequently
when the correct diagnosis would rather have been mixed
dementia, as seen by neuropathologists in 20–40% of
dementia cases, at least in Europe and the U.S.42 There
seem to be no distinctive features of VD in FDG PET
(apart from those patients who have multiple cortical
ischemic infarcts that are seen as corresponding lesions on
MRI/CT and PET). Several studies suggested that a
diffuse global reduction of cerebral glucose metabolism is
a typical finding in VD, and that the degree of that
reduction in association cortex is similar to that seen
AD.44,45 Thus, the contrast between metabolic impair-
ment in association areas and preserved metabolism in
primary areas, basal ganglia and cerebellum, that is typi-
cal for AD but not for VD, seems to provide the best
distinction with FDG PET between these two types of
dementia.44

Local cerebral blood flow (CBF) is usually also re-
duced in areas with impaired neuronal function and
reduced glucose metabolism. Thus, the typical impair-
ment of association areas seen with FDG PET has also
been described for CBF images obtained with PET and
SPECT.46,47 Similar findings have been reported also with
PET measurements of oxygen metabolism.48 It has been
suggested that glucose metabolism is more impaired in
AD than oxygen metabolism,49 and that vascular reactiv-
ity is preserved in AD but impaired in VD,50 but it is not
yet whether these findings can be used for clinical differ-
ential diagnosis. FDG PET images are superior to the
other techniques with respect to signal to noise and are
easily obtained under clinical conditions, since blood
sampling and calculation of metabolic rates of glucose are

not required for identification of the typical pattern.8 FDG
PET has been validated in autopsy-confirmed series,51

whereas 15O-water-PET was not proven to be clinically
useful.47 In the few direct comparisons of FDG PET with
SPECT that have been performed,52–54 FDG PET was
always shown to be more accurate. Since the highest
benefit of function imaging for diagnosis of dementia
probably will be obtained in cases that do not yet present
with the typical symptoms of AD but may have more
subtle symptoms that would be classified clinically as
MCI,20,55–57 high accuracy is certainly needed. Whether
PET could be cost effective compared with SPECT in
that situation in spite of its higher price has not yet been
studied.

In summary, differentiation of AD from most other
types of dementia is possible with FDG PET, because
most other diseases that may lead to dementia types have
different patterns with respect to affected brain areas
(Table 1). Besides differentiation from vascular demen-
tia, probably the most difficult issue is differentiation
from Lewy body diseases (Parkinson disease and demen-
tia with Lewy bodies) which involve the same areas as in
AD, and primary visual cortex in addition.58,59 Yet, the
diagnostic value of the latter finding is not yet entirely
clear. The largest sample of dementia patients studied
with FDG PET and confirmation of diagnosis by autopsy
was collected from multiple centers by Silverman et al.51

It confirmed that the sensitivity to detect AD is higher than
90% (as suggested by other studies without confirmation
by autopsy), and found that specificity for discrimination
from other dementia types is only in the order of 70%. It
remains to be seen whether that latter figure can be
improved my better standardization with automatic pro-
cedures for detection of abnormal metabolism and dis-
ease-associated patterns. Another possibility for improve-
ment certainly is the use of tracers that are specific for
particular transmitter systems that are impaired to a differ-
ent degree in different dementia diseases, as reviewed in
the next paragraphs.

Specific neurotransmitters: Dopamine
Although FDG PET is a very powerful diagnostic tool
because it gives a comprehensive image of synaptic
function, it lacks specificity with regard to individual
transmitter systems. There are neurodegenerative dis-
eases involving specific neurotransmitters that do not
have a distinct appearance on FDG PET scans, probably
because the cells synthesizing and releasing these trans-
mitters are too few or too widely dispersed to have a local
impact on energy consumption. The most evident exam-
ple is Parkinson disease, where the substantia nigra pars
compacta with its profound degeneration of dopaminer-
gic neurons is too small and metabolically too similar to
the rest of the midbrain to be easily recognized in FDG
PET scans. The lack of dopamine in the striatum also does
not induce a major change of glucose consumption there,
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possibly because of the primarily inhibitory effect of
dopamine and the complicated subsequent neuronal net of
mostly inhibitory transmission downstream seen together
causes a slight increase of glucose consumption that is too
small to be of major diagnostic use.60 In these instances,
we need tracers that image specifically that particular
neurotransmitter system.

We used 18F-fluorodopa (F-DOPA) to study the do-
paminergic system. The tracer is a substrate to DOPA
decarboxylase which is expressed in abundance by
dopaminergic neurons. The product, 18F-fluorodopamine,
accumulates in proportion to decarboxylase activity which
in turn reflects the amount of viable dopaminergic cells.
The typical finding in Parkinson disease is a severe
reduction of tracer accumulation, predominantly in the
posterior part of the putamen, indicating loss of more than
50% of dopaminergic neurons projecting to this part of the
striatum (see review by Brooks61).

The pathological hallmark of Parkinson disease are
intracellular deposits consisting mainly of alpha-synuclein
and ubiquitin, which are called Lewy bodies and are
located in the midbrain, in particular in the substantia
nigra. Yet, in dementia with Lewy bodies (DLB) these
pathological deposits may also occur in the cortex, even
without prominent occurrence in the brainstem. Patients
with DLB often clinically have fluctuating levels of atten-
tion and consciousness, optical hallucinations, and may
develop the motor features of Parkinson disease.62,63 On
the other hand, up to 30% of patients with Parkinson
disease develop dementia and often also intermittent hal-
lucinations in particular under treatment with dopamin-
ergic drugs. It is conceivable that Parkinson disease and
DLB represent the main manifestations of the spectrum of
Lewy body disorder with the possibility of intermediate
manifestations, and progression of primary midbrain le-
sions to involve cortical areas and vice versa. The noso-
logical classification of DLB is even more complicated by
the fact that cortical Lewy bodies may also occur to a
variable extent in Alzheimer disease.64

Even in Parkinson disease without dementia and nor-
mal FDG PET scans, a correlation between F-DOPA
accumulation in the basal ganglia and memory tests
scores has been described,65 suggesting that the dopamin-
ergic degeneration by itself can affect cognitive func-
tions. It has also been demonstrated that there is a
reduction of cortical F-DOPA accumulation in Parkinson
disease.66 On the other hand, a reduction of F-DOPA
accumulation in the basal ganglia has also been noted in
DLB, even in patients without motor signs of Parkin-
sonism,67 whereas F-DOPA uptake in the basal ganglia is
completely normal in AD. Thus, F-DOPA PET may be
currently the best tool to detect all types of Lewy body
disease in-vivo. It remains to be determined whether
ligands for biogenic amine transporter sites, such as 18F-
beta-CFT68 and 11C-dihydrotetrabenazine,69 and ligands
for D2 and D1 receptors will provide additional insight

into the pathophysiology of Lewy body diseases and may
further refine clinical diagnosis.

Specific neurotransmitters: Acetylcholine
Impairment of cholinergic neurotransmission in the
central nervous system leads to severe cognitive impair-
ment.70 Anticholinergic drugs can induce memory im-
pairment even in normals. Cholinergic innervation of the
cerebral cortex has its origin mostly in some basal nuclei,
of which the nucleus basalis magnocellularis (of Meynert)
is most important. Degeneration of cholinergic neurons
has been observed in several neurodegenerative diseases,
most notably in Alzheimer and Parkinson disease,71,72

whereas it may be mostly intact in vascular dementia.73

Thus, in-vivo diagnosis of cholinergic degeneration could
contribute to diagnosis of and differentiation between
dementing diseases.

In recent years, a few tracers have been developed for
in-vivo imaging of cerebral AChE with positron emission
tomography (PET).74,75 We used a piperidine analogue of
acetylcholine, 11C-labeled N-methyl-4-piperidyl-acetate
(MP4A), and developed a non-invasive method to obtain
quantitative measurements of cortical AChE activity in
normal subjects and AD.76,77 The tracer is freely diffus-
ible in brain and thus initially is distributed in proportion
to local blood flow. As a substrate of AChE, it is hydro-
lyzed by this enzyme and accumulates depending on
enzyme activity because the hydrolyzed product is trapped
in brain. AChE in human cortex is mainly expressed in
the cholinergic axons, and to a lesser extent also in some
cholinoceptive neurons. With impaired function and
neurodegeneration of these cholinergic axons, the amount
of cortical AChE is reduced which can be detected by
reduced accumulation of MP4A.

Fig. 3   Severe impairment of cortical AChE activity (less than
50% of normal reference values), in particular in occipital cortex
(marked by crosshairs in orthogonal cuts), as measured by 11C-
MP4A PET (top row), in a patient with probable Lewy body
dementia. Occipital glucose metabolism is also impaired, but to
a lesser degree (bottom row).
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Reduced AChE activity in AD has now been observed
in several studies with MP4A.78,79 It is reduced in all
cortical areas, most severely in occipital and temporal
cortex. When compared to Parkinson disease in which
AChE may be reduced without dementia, the reduction in
AD is more severe, in particular in parieto-temporo-
occipital association cortex. Of course, additional AChE
inhibition due to the action of choline esterase inhibitors
which are used therapeutically in AD to enhance synaptic
acetylcholine levels by inhibition of hydrolysis can also
be measured by MP4A.

The few histochemical studies in DLB that have been
performed so far indicated a particularly severe degenera-
tion of cholinergic neurons.80 It is of considerable clinical
interest, whether this severe deficit may contribute to
fluctuations of consciousness and the hallucinations that
are characteristic for DLB. This is the topic of an ongoing
scientific study. Preliminary results indicate that there is
in fact a severe reduction of cortical AChE activity in
DLB. The potential of the cholinergic deficit to cause
hallucinations was illustrated by the case of an 83-year old
woman, who had probable DLB with moderately severe
dementia (mini mental status examination [MMSE] score
18 of 30), fluctuating consciousness, and recurrent visual
and auditory hallucinations. FDG PET was only mildly
abnormal, but AChE activity was severely reduced in
occipital cortex (Fig. 3).

Thus, the assessment of specific neurotransmitter sys-
tems with PET is likely to contribute substantially to
clinical distinction between different neurodegenerative
diseases that may lead to dementia. Besides the two
tracers reported here, receptor ligands for the cholinergic,
dopaminergic, and serotonergic system and newly devel-
oped tracers that label amyloid plaques are likely to play
an important role.81–84 The full clinical relevance of these
developments probably will turn up when more specific
and also course-modifying drugs for dementia treatment
become available.
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