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INTRODUCTION

THE GAMMA CAMERA makes imaging possible by limiting
the direction of the incidence of the γ-ray with the colli-
mator on the detector front. The low spatial resolution of
the SPECT image is mainly due to the limited collimator
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Iterative reconstruction techniques such as an ordered subsets-expectation maximization (OSEM)
algorithm can easily incorporated various physical models of attenuation or scatter. We imple-
mented OSEM reconstruction algorithm incorporating compensation for distance-dependent
blurring due to the collimator in SPECT. The algorithm was examined by computer simulation to
estimate the accuracy for brain perfusion study. Methods: The detector response was assumed to
be a two-dimensional Gauss function and the width of the function varied linearly with the source-
to-detector distance. The attenuation compensation (AC) was also included. To investigate the
properties of the algorithm, we performed computer simulations with the point source and digital
brain phantoms. In the point source phantom, the uniformity of FWHM for the radial, tangential and
longitudinal directions was evaluated on the reconstruction image. As for the brain phantom,
quantitative accuracy was estimated by comparing the reconstructed images with the true image by
the mean square error (MSE) and the ratio of gray and white matter counts (G/W). Both noise free
and noisy simulations were examined. Results: In the point source simulation, FWHM in radial,
tangential and longitudinal directions were 14.7, 14.7 and 15.0 mm at the image center and were
15.9, 9.83 and 10.6 mm at a distance of 15 cm from the center by using FBP, respectively. On the
other hand, they were 8.12, 8.12 and 7.83 mm at the image center, and were 7.45, 7.44 and 7.01 mm
at 15 cm from the center by OSEM with distance-dependent resolution compensation (DRC). An
isotropic and stationary resolution was obtained at any location by OSEM with DRC. The spatial
resolution was also improved about 6.5 mm by OSEM with DRC at the image center. In the brain
phantom simulation, the blurring at the edge of the brain structure was eliminated by using OSEM
with both DRC and AC. The G/W was 2.95 and 2.68 for noise free and noisy cases, respectively,
when no compensation was performed. But the values for G/W without and with noise became 3.45
and 3.21 with AC only and were improved to 3.75 and 3.71 with both AC and DRC. The G/W
approached the true value (4.00) by using OSEM with both AC and DRC even when there was
statistical noise. Conclusion: In conclusion, OSEM reconstruction including the distance-depen-
dent resolution compensation algorithm was reasonably successful in achieving isotropic and
stationary resolution and improving the quantitative accuracy for brain perfusion SPECT.
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resolution. This is because the collimator hole diameter
must be relatively large to obtain reasonable efficiency,
and degradation of the spatial resolution is introduced by
oblique entrance of the γ -ray into the detector. So that the
spatial resolution, and not only the degradation of resolu-
tion, differs at the location of the reconstructed image.
Therefore, restoration filters, such as the Wiener filter
provide incomplete results due to the anisotropic and non-
stationary nature of SPECT reconstruction.

To compensate for source-to-detector distance blurring
in SPECT, several methods have been proposed. For
example, by using the frequency-distance relationship
(FDR), the signal at a distance from the center of rotation
is concentrated along lines on the two-dimensional Fou-
rier transform of the sinogram.1 Therefore an inverse filter
which is the reciprocal of the modulation transfer function
(MTF) can be applied for an individual signal correspond-
ing to distance in the Fourier domain.1–7 Ogawa and
Katsu8 proposed another approach removing the oblique
component of the γ-ray to the detector due to the geo-
metrical shape of the collimator by iterative processing.
Such algorithms are the pre-processing method for the
projection data and the corrected projection data are then
reconstructed with the usual filtered backprojection (FBP)
or ordered subset-expectation maximization (OSEM) al-
gorithm.9,10 There is the advantage of comparatively fast
calculation.

On the other hand, an iterative method such as the
OSEM algorithm can easily incorporate various physical
models of attenuation11,12 or scatter.33,34 Iterative SPECT
reconstruction algorithm modeling the distance-depen-
dent detector response can be applied to the emission data
to obtain isotropic and stationary estimates of the activity
distribution.13–21 Maniawski et al.38 demonstrated that
varying the distance from the source of activity to the
detector provided significant artifacts on Tl-201 cardiac
SPECT images due to varying spatial resolution. Al-
though there are many reports about OSEM with distance-
dependent resolution compensation (DRC) applied to
cardiac SPECT study,17,24 it is not well known whether
DRC is available or not in the brain SPECT study. In this
report we evaluated the basic properties of OSEM with
DRC by computer simulation, and the algorithm was
applied the digital brain phantom to estimate accuracy for
brain perfusion studies.

THEORY

The basic equation
The basic equation for maximum likelihood-expectation
maximization (MLEM) is:

(1)

where λk
j is the value of the reconstructed image at pixel

j for the k-th iteration, yi is the measured projection at the
i-th bin, and Cij is the detection probability that gives the
fraction of photons from pixel j to projection bin i. In the
OSEM, it computes all with only the projection data in the
subset instead of using all the data simultaneously. In this
case, k indicates the updating number of the image.

If there is no blurring at all, this is equivalent to reaching
a detector as the narrow-beam γ-ray which is emitted
from pixel j. In the conventional OSEM algorithm, the
response function of the detector is assumed to be the
rectangular form for reconstruction as shown in Figure 1
(a). Of course conventional FBP is used in the same
manner for reconstruction. On the other hand, the re-
sponse function spread to the neighboring pixels and
slices which take into account degradation of the resolu-
tion are shown in Figure 2 (b). This function agrees with
the point spread function (PSF) which is the count distri-
bution by measuring a point source.

Fig. 1   The shape of detector response. a) Ideal detector
response. b) Blurring detector response which corresponds the
photon count density distribution at the detector surface when a
point source is imaged using a gamma camera (point spread
function).

Fig. 2   The detector response was assumed to a 2D Gauss
function. The width of Gauss function varied with the distance
from γ-ray source to detector surface.
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[cm−1] at voxel j, Ji is the subset of pixels passing through
the i-th ray and lij is the intersection length [cm]. The µ-
map is supplied as a prior information measured by the
external source or X-ray CT scanner. The µ-map is
assumed to vary slowly within the acceptance angle of
collimator holes, so the attenuation factor was calculated
approximately only along the central path from each
voxel.16,24 The probability of incorporating the attenua-
tion consists in calculating C[x,y]jexp(−     µjlij).

Projector and backprojector
In the OSEM algorithm, the reconstruction image can be
obtained by repeating the projector-backprojector pair.
The forward projection involving 3D resolution compen-
sation computes the weighted linear summation by using
detector probability C[x,y]j as the convolution kernel.
Backprojection becomes the inverse of forward projec-
tion. This convolution operation in the projector/
backprojector provides weighted smoothing. When in-
corporating resolution compensation, the computation of
this process is added and this increases calculation time.

METHODS

Computer simulations
To evaluate the performance of the present algorithm, we
carried out the computer simulations with the point source
and digital brain phantoms. The size of the phantoms was
128 × 128 × 128 cubic pixel with a pixel size of 0.3125 cm.
In the point source phantom, the spheres with a five-pixel
diameter were placed 0, ±5.0, ±10.0 and ±15.0 cm from
the image center on the central slice, and no attenuating
medium was assumed. This phantom was used to inves-
tigate the basic properties of the algorithm and to test the
implemented program.

In the brain phantom, the activity distribution map was
modeled by the gray and white matter structures seg-
mented from the autopsy brain phantom.25,26 The activity
ratio of gray/white matter was assumed to be 4 : 1. The
same image was used in all the slices. An attenuation map
was made by scaling the outline of the activity distribu-
tion, and filled with the constant linear attenuation
coefficient µ in the tissue and skull regions. To simulate
a Tc-99m study, the µ values for the narrow beam of 141
keV were assumed to be 0.15 and 0.26 cm−1 for tissue and
skull, respectively.

The simulated collimator was a low-energy high-reso-
lution (LEHR) parallel-hole collimator for Tc-99m on a
triple-head gamma camera (PRISM-3000XP, Marconi)
as previously reported by Pan et al.19

FWHM [cm] = 0.0513d − 0.119.  (7)

The simulation data were generated from the each
phantom by convoluting a Gauss function (σ = ±2.0).
Furthermore, the projection data were also attenuated
along the corresponding attenuation path in the brain
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Definition of the response function depend on distance
First of all, the following three assumptions22,23 are intro-
duced to formulate the response function: 1) the blurring
of the detector can be defined by the Gauss function; 2) the
full width at half maximum (FWHM) of the response
function varied linearly with the distance between the
detector and source; and 3) FWHM of the x (horizontal)
and y (vertical) directions of the detector are the same as
each other. There is the following simple relationship
between FWHM and distance d:

FWHM = a × d + b,  (2)

where a and b are constant and are precalculated by linear
regression analysis measuring at various d with the point
source. Now, defining the coordinate system as shown in
Figure 2, a two-dimensional Gauss function is generated
around the γ-ray incidence point [tx, ty] with the next
equation:

h(x,y,d) =
1  e −

r2

, (3)
2πσ2(d) 2σ2(d)

where σ(d) is the standard deviation as a function of
distance d, and r is the distance from the pixel [x, y] to [tx,
ty] as follows:

r =    (x − tx)2 + (y − ty)2. (4)

The relationship between σ(d) and FWHM is expressed
as,

σ(d) =
1

FWHM ≅ 0.425 FWHM. (5)
8 ln 2

Therefore FWHM can be calculated by means of equation
(2) if distance d is determined, and consequently the
response function h(x,y,d) can be calculated by substitut-
ing equations (4) and (5) into equation (3). This function
should be interpreted as being the response of the whole
detector system including the collimator.

Inclusion detector response and attenuation into detec-
tion probability
Detection probability Cij can be defined as the fraction of
photons emitted from voxel j in the reconstruction space
to reaching detector i. Therefore h(x,y,d) in equation (3)
indicates the detection probability itself. Because the
probability is spread out in the slice direction (y), we
conveniently used the notation C[x,y]j as detection prob-
ability in equation (1). If total probability of observing a
photon is assumed to be unity measured at a certain
projection angle, detection probability was then redefined
by performing the following normalization:

C[x,y]j =
h(x,y,d)

. (6)
h(x,y,d)

Attenuation compensation (AC) was also included in
the present algorithm. The attenuation factor is given by
exp(− µjlij), where µj is the linear attenuation coefficient
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phantom simulation. Each projection data set consisted of
120 angles with a 128 × 128 matrix, and a 25 cm radius
circular orbit was assumed. Poisson statistical noise36

was added to the generated projection data from the brain
phantom. In all simulations no Compton scatter effect was
involved at all since we were interested in examining how
distance-dependent resolution compensation would work
effectively. The program was implemented using Visual
C++6.0 (Microsoft Inc.) and a personal computer
(Pentium-III, 600 MHz, 192 MB memory).

Evaluation
To investigate the performance and basic properties of the
DRC algorithm, the uniformity of FWHM for the radial,
tangential and longitudinal directions was evaluated for
each point source on the reconstructed image. The itera-
tion number was varied from 1 to 30 with a subset size of
2. The reconstruction was performed by OSEM with DRC
only because the point source phantom was assumed to be
attenuation free. For comparison, the reconstruction was
also performed by FBP with no compensation. In addi-
tion, the ideal projection data by means of which the same
point source was reprojected with a narrow-beam were
reconstructed by using the usual OSEM algorithm with-
out any compensation. The iteration number was 30 with
a subset of 2. The probability of Cij was calculated as the
area of overlap between the line from detector i and pixel
j, and details of this algorithm were previously reported.37

The reprojection for generation of the ideal data was
performed with the same Cij and projector algorithm. As
a result, because it converged on 8.01 mm FWHM, this
value was employed as the ideal FWHM.

As for the brain phantom study, the quantitative accu-
racy was estimated by comparing the reconstructed im-
ages with the true image by using the mean squares error
(MSE) and the ratio of gray to white matter counts (G/W).
Three reconstruction strategies with OSEM were per-
formed with: a) no compensation, b) AC only and c) both
AC and DRC simultaneously. Both noise free and noisy
simulations were examined. The subset size used was 8.
The rectangular (3 × 3 pixels) regions of interest (ROI)
were defined at the gray matter (superior temporal gyrus)
and white matter (corpus callosum).

RESULTS AND DISCUSSION

Point source simulation
Figure 3 shows the images reconstructed by means of
FBP and OSEM with DRC at the iteration number 25
and subset size 2. The reconstructed image demonstrates
improvements in uniformity and sharpening of each point
source by OSEM with DRC. The profile curves through
the horizontal line for each image were also indicated. In
the FBP method, the peak intensity declined in the region
of the image center, and an entire broad profile curve was
found. The relative intensity in the central region was
decreased by approximately 25% compared with the edge
region. The reason for the decline in the peak in the central
region seems to be that the response function was spread
out due to the resolution degradation, but not the attenu-
ation because each point source was set in the air. On the
other hand, the peak intensity was recovered in the central
region by the OSEM with DRC.

In Figure 4 are plotted the FWHM in radial, tangential
and longitudinal directions at each point source for these
reconstructed images. In the FBP method, the estimated
FWHM were 14.7, 14.7 and 15.0 mm in radial, tangential

Fig. 3   Reconstructed images of the central slice in the 3D point
source phantom by using a) FBP and b) OSEM with DRC
(subset = 2, iteration number = 25). The simulated projection
data included the effect of detector response only. Profiles
through the horizontal line for the reconstructed images by each
method. The spatial resolution by OSEM with DRC was signifi-
cantly improved than that using FBP.

Fig. 4   Estimated FWHM at each location of the point sources
in the radial (●), tangential (□) and longitudinal (△) directions
calculated by a) FBP and b) OSEM (subset = 2, iteration number
= 25) with DRC. An isotopic and stationary spatial resolution
was obtained using OSEM with DRC at every location.
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and longitudinal directions at the image center, so that the
spatial resolution was almost isotropic. Nevertheless aniso-
tropic FWHM was found to leave the center and became
15.9, 9.83 and 10.6 mm in the radial, tangential and
longitudinal directions, respectively. On the other hand,
the FWHM in those using OSEM with DRC were 8.12,
8.12 and 7.83 mm at the image center and were 7.45, 7.44
and 7.01 mm at the periphery. An isotropic and stationary
resolution was obtained at any location by OSEM with
DRC. Resolution almost recovered the ideal value (8.01
mm), and the 6.5-mm improvement (from 14.7 mm to
8.12 mm at the center) was obtained with the DRC
algorithm. The degree of improvement was almost com-
pletely consistent with the results reported by Formiconi

et al.14  (from 15 mm to 9 mm), but a tendency towards
small over-correction was observed with DRC in the
periphery region for the point source. A reasonable expla-
nation for over-correction seemed to be the roughness of
the sampling point when generating a Gauss function. The
Gauss function was approximated in the rectangle form
shown in Figure 2, so there was an error due to rapid
change in Gauss function near the collimator. When doing
more precise resolution correction, a finer sampling ac-
quisition would be needed. Because this introduces an
increase in total computing time, it is impossible to do
finer sampling with present computer performance, but
this seemed to have little effect on quantitation in a routine
study because the error was equal to or less than 1 mm.

Fig. 5   FWHM in radial, tangential and longitudinal directions versus iterative number. FWHM were
determined from the point source phantom by using OSEM reconstruction with DRC. The notations of
“periphery” and “center” represent the location of point source at 15 cm and 0 cm from the image center,
respectively.

Fig. 6   Mean squares error (MSE) difference between the reconstructed images and true phantom image
is plotted as a function of the iteration number for noise free and noisy simulations. The OSEM
reconstruction includes no compensation, attenuation compensation (AC) only and both AC and DRC.
Subset size was 8.
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Figure 5 shows FWHM measured from the point source
by OSEM with DRC at the center and 15 cm from the
center for radial, tangential and longitudinal directions as
function of the iteration number. The number of iterations
needed to reach a constant FWHM was about 20 for the
periphery and 25 for the center. The convergence rate was
more rapid at the periphery and slower in the center. These
results agree with the results reported by Pan et al.19 and
Kohli et al.21 Kohli et al. concluded that the reason for
slow convergency in the central region was the effect of
attenuation, but our simulation was assumed to have a no
attenuating medium in case of the point source phantom,
so the slow convergency cannot be attributed to the
attenuation. A reasonable explanation for the slow con-
vergency is that the SPECT resolution is originally better
at the periphery than at the center. This seems to be the
reason for the rapid convergence rate at the periphery.

Brain phantom simulation
Figure 6 shows the MSE value difference between the
reconstructed images and the true phantom image is
plotted as function of the iteration number with and
without noise. In the noise free case, the usual OSEM
required only about 5 iterations to reach a constant MSE.
A minimum MSE was achieved for the OSEM results
with both AC and DRC, but the MSE was not completely

constant even after 35 iterations. On the other hand, a
rather different tendency was observed in MSE with noise
simulation. With noise, the MSE value with AC decreased
rapidly as a function of the iteration number and reached
to its minimum point at 4 iterations. Subsequently it
increased gradually at late iterations. On applying DRC,
the minimum MSE was observed at 13 iterations, and it
increased slightly. However, MSE was almost constant
and there seemed to be little effect of noise.

Figure 7 is the reconstructed image of the digital brain
phantom when using OSEM without any compensation (5
iteration), with AC only (5 iteration) and with both AC
and DRC (30 iteration), respectively, in noise free simu-
lation. The true phantom image is also shown for compari-
son. There was blurring of the surrounding activity into
the edge region on the reconstructed images obtained by
OSEM without any compensation and with AC only. The
structures in the brain were not completely resolved by
performing AC alone. We found that the blurring at the
edge of the brain structure disappeared on applying the
DRC, and the reconstructed image qualitatively ap-
proached the true image.

Figure 8 shows the reconstructed images with noise.
The iteration numbers were 5, 5 and 20 for no compensa-
tion, with AC and with both AC and DRC, respectively.
No prefilter was applied before any reconstruction pro-
cess. It should be noted that the influence of statistical
noise was suppressed with DRC. It was likely that Gaussian

Fig. 7   Brain phantom results without statistical noise. The
reconstruction includes no compensation (iteration number = 5),
attenuation compensation (AC) only (iteration number = 5) and
both AC and DRC (iteration number = 30) with a subset size 8.
The true image was the original digital phantom. Simulated
projection data included the effect of attenuation and detector
response. Scatter component was excluded in the simulated
projection data. The reconstructed image with both AC and
DRC was approached to the true image.

Fig. 8   Brain phantom results with statistical noise. Reconstruc-
tion includes no compensation (iteration number = 5), attenua-
tion compensation (AC) only (iteration number = 5) and both
AC and DRC (iteration number = 20) with a subset size 8. No
prefilter was applied before any reconstruction process. It should
be noted that the effect of statistical noise was suppressed with
DRC.
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convolution kernel to compensate for the distance-depen-
dent detector response behaved as a kind of smoothing
filter. Use of the DRC algorithm is expected to improve
the spatial resolution without increasing noise in a clinical
SPECT study.

The G/W was 2.95 and 2.68 for noise free and noisy
cases, respectively, when no compensation was performed.
But the G/W values without and with noise became to 3.45
and 3.21 with AC only and those were improved to 3.75
and 3.71 with both AC and DRC. Combining the DRC
with AC approached the true value (4.00) compared with
AC only because DRC reduced the effect of partial
volume. It can be concluded that full recovery was not
achieved with AC alone, and images produced by OSEM
with both DRC and AC appeared to be qualitatively and
quantitatively superior to those produced by OSEM with-
out DRC even if statistical noise exists.

Limitation and future works
Some limitations should be discussed here. In our inves-
tigation, an increase of about 6 times in computing time
was seen compared with the conventional OSEM algo-
rithm. Almost all the computational effort was expended
on the calculation of Gauss function and convolution.
Moreover, the optimal iteration number with DRC was
larger than that with no compensation and AC only.
Hutton et al.24 also reported that the increase in computa-
tion time was about 4 times in the case of subset 2. Despite
the long computation time and slow convergence, the
DRC algorithm is valuable for clinical application to brain
study. We believe this problem can be solved by using a
large memory to store the convolution kernel for all
projection angles and by improving of the computation
performance, so this problem will be minor.

To apply the present method to the fan beam collimator,
it cannot be used just as it is. FWHM of the response
function is not only dependent on the distance, but also the
lateral position of the γ -ray incidence on the detector. That
is, the parameter σ, which determines the form with Gauss
function, becomes a function of d and x. When measuring
this, the present method can be applied to the fan-beam
projection data.

In this study we excluded the effect of Compton scatter
in the simulation. Scatter correction is generally done
when preprocessing reconstruction. The triple energy
window (TEW) method27–29 is well established for scatter
compensation with sub-window images. The TEW method
uses measurements either below and/or above the photo-
peak as reference points for the linear interpolation used
to estimate the scatter components. A new technique for
scatter compensation was recently developed based on
the transmission images, namely, a transmission-depen-
dent convolution-subtraction (TDCS) method.30–32 The
estimated scatter component using these methods is sub-
tracted from the projection data. Instead of subtracting the
scatter component, one can incorporate scatter compensa-

tion as a part of the OSEM algorithm.12,33–35 In addition,
the scatter function can be included directly into the Cij as
with the detector response.33–35 The attenuation, scatter
and distance-dependent resolution compensation should
be performed for fully quantitative SPECT reconstruc-
tion.

CONCLUSION

In this study we demonstrated the effectiveness of 3D
distance-dependent resolution compensation with OSEM.
We investigated the basic properies of the algorithm by
using the point source phantom and applied the digital
brain phantom for estimating the accuracy of the cerebral
perfusion study. Our results suggested that the imple-
mented OSEM with AC and DRC was reasonably suc-
cessful for achieving isotropic and stationary resolution
and improving contrast in the brain SPECT study.
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