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REVIEW

INTRODUCTION

THE MOST WIDELY used tumor-seeking agent with positron
emission tomography (PET) is 2-18F-fluoro-deoxy-D-glu-
cose (FDG), which is transported, phosphorylated and
metabolically trapped in tumor cells as a glucose substi-
tute.1 The clinical usefulness of FDG PET has already
been proved in detecting, staging and restaging various
kinds of malignant tumors, most notably lung cancer,2–6

malignant lymphoma,7–11 colorectal cancer,12–16 esoph-
ageal cancer,17–21 malignant melanoma22–26 and head/
neck cancer.27–30 FDG PET for these six malignant tumors
is now approved for reimbursement by public insurance
in the United States of America. In relation to the reim-
bursement by public insurance, the clinical use of FDG
PET has been sharply increased since 1998, but the
Japanese Ministry of Health and Welfare has yet to
approve FDG PET for coverage by public medical insur-
ance.

Nuclear medicine physicians suffer from a “diagnostic
dilemma,” in which a relatively high false positive ratio of

FDG PET in diagnosing malignant tumors prevails. This
is based on the physiologic uptake of FDG in normal
tissue31 and non-specific FDG uptake in macrophage and
reactive inflammatory cells surrounding the tumor
cells.32–34 To increase more specific tumor uptake or more
specific tumor characterization, numerous PET radio-
pharmaceuticals have been developed, and some of them
are being tested in clinical trials.

This review will briefly survey the tumor uptake mecha-
nism and clinical significance of representative non-FDG
PET radiopharmaceuticals used in clinical trials for pa-
tients with cancers.

TUMOR DETECTION BY PET
WITH RADIOLABELED AMINO ACIDS

Methionine
As applications of metabolic imaging expand, radiola-
beled amino acids may gain increased clinical interest.
Among various radiolabeled amino acids for PET study,
11C methionine has been most used clinically, although its
scale is much smaller than that of FDG.

11C methionine is a natural essential amino acid and
enters tumor cells via the L-amino acid transporter ac-
cording to the accelerated protein and RNA synthesis in
malignant tumors. An experimental study demonstrated
that FDG accumulates in macrophages and granulation
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tissue, which caused false positive results in diagnosing
cancers.34 Conversely, 11C methionine accumulates more
specifically in viable cancer cells35 and it reduces false
positive results in diagnosing malignant tumors. Radiola-
beled methionine is more sensitive to cytotoxic treatment,
such as chemotherapy or radiotherapy, than FDG.36 It is
also more receptive to changes in glucose metabolism in
tumors after treatment is delayed compared to methionine
metabolism.36

11C methionine can detect brain tumors,37 lung cancer38

and head/neck cancer.39 A comparative study of FDG and
11C methionine revealed that tumor uptake of FDG was
significantly higher than that of 11C methionine.40 Never-
theless, the tumor uptake of 11C methionine correlated
well with that of FDG, and the diagnostic sensitivity of
11C methionine for malignant tumors was similar to that
of FDG.40 In a comparison of normal biodistribution of
11C methionine and FDG in human subjects, 11C methio-
nine uptake in the brain is less than that of FDG. Myocar-
dial tracer uptake of FDG is visualized even when patients
fast before the FDG injection, and it hampers tumor
visualization near the heart. Lower uptake of 11C methio-
nine in the brain and heart is an advantageous character-
istic in detecting brain tumors and lung cancer localized
near the heart.40 On the other hand, 11C methionine has in-
tense physiological uptake in the lachrymal glands, sali-
vary glands, and, most significantly, in the bone marrow.
Because a high serum glucose level may reduce tumor
FDG uptake, 11C methionine is the better choice in pa-
tients with uncontrolled diabetes mellitus. FDG yields
better results in detecting tumors near the bone marrow or
pancreas.

Radiolabeled tyrosine
Tyrosine, another type of amino acid tracer, tends to be
incorporated in the process of cellular proliferation and
protein biosynthesis. 11C tyrosine PET makes it possible
to visualize malignant tumors and quantify the protein
synthesis rate of tumors, which correlated well with tumor
SUV.41 By the clinical use of 11C tyrosine remains limited
to only a few institutes.42–45

11C labeled compound as 11C methionine and 11C
tyrosine has the disadvantage of a short physical half-life
(20 min). It may limit the number of patients in a day and
make it difficult to obtain a whole-body PET image for the
detection of distant metastasis. Alternative 18F labeled
compound with a relatively longer half-life to improve
patient throughput have been required. As a result, re-
searchers developed 18F tyrosine, which is clinically
useful in detecting and delineating brain tumors.46 18F
tyrosine is metabolized and incorporated into protein47

and its metabolites appear in the blood at 60 minutes post-
injection, but its low radiochemical yield prevents its
widespread use in clinical PET.

Our institute designed clinical trials on PET with 18F α-
methyl tyrosine after successful European clinical trials

of 123I α-methyl tyrosine in patients with brain tumors.48

The radiochemical yield of 18F α-methyl tyrosine is
higher than that of other 18F labeled amino acids such as
18F tyrosine and 18F phenylalanine.49 Approximately 800
MBq of 18F α-methyl tyrosine can be obtained in one
radiosynthesis. Basic experiments with tumor-bearing
mice showed tumor uptake of 18F α-methyl tyrosine and
its prolonged retention in tumor cells.50 The competition
with L-alanine on 18F α-methyl tyrosine tumor uptake
suggested the accumulation of 18F α-methyl tyrosine in
tumor cells via an amino acid transport system. Approxi-
mately 90% of 18F α-methyl tyrosine was not metabolized
and remained in the tumor cells. Unlike natural amino
acid, most of 18F α-methyl tyrosine in the tumor cells was
not incorporated into the protein like 123I α-methyl ty-
rosine (Fig. 1).50

Clinical experience with 18F α-methyl tyrosine PET
We have conducted clinical trials of 18F α-methyl tyrosine
PET in patients with malignant tumors.51–53  Most nota-
bly, 18F α-methyl tyrosine was proven to be useful in
diagnosing brain tumors in comparison with FDG. In
astrocytic tumors, 18F α-methyl tyrosine accumulated in
both low grade and high grade glioma. PET with 18F α-
methyl tyrosine yielded better results in tumor delineation
than FDG (Fig. 2). A gliomatosis cerebri, diffusely dis-
seminated glioma, is difficult to identify by MRI or CT,
but PET with 18F α-methyl tyrosine successfully revealed
this pathological condition. It is not perfect but 18F α-
methyl tyrosine is useful for differential diagnosis of
neoplasms and other etiologies in the brain.

We also conducted clinical trials in detecting muscu-
loskeletal tumors in comparison with FDG. The diagnos-
tic sensitivities and specificities for malignancy were
72.7% and 84.9%, respectively, with using 18F α-methyl
tyrosine with cut-off standardized uptake values (SUV) of
1.2, and 72.7% and 66.0%, respectively, and FDG with a
cut-off SUV of 1.9. The accuracy with 18F α-methyl
tyrosine was 81.3%, higher than that for FDG (68.0%),
and the difference with respect to specificity was signifi-
cant. On the other hand, although a significant correlation
was found between malignant tumor grade and SUV with
both 18F α-methyl tyrosine- and FDG-PET, only FDG
demonstrated a significant differences among grades I, II
and III. 18F α-methyl tyrosine and FDG for PET appear
equally effective at detecting musculoskeletal tumors. In
evaluating musculoskeletal tumors, 18F α-methyl tyrosine
may be superior to FDG in the differentiation between
benign and malignant tumors, whereas FDG may be the
better choice for non-invasive malignancy grading. In a
patient with a slow growing mass in the thigh, 18F α-
methyl tyrosine PET showed abnormal accumulation in
the calcified mass lesion but FDG PET showed no abnor-
mal accumulation (Fig. 3). Our pathological diagnosis
found osteosarcoma and the diagnosis with 18F α-methyl
tyrosine was accurate.
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Fig. 1   Mechanism of tumor uptake of 11C
methionine and 18F α-methyl tyrosine.
Both 11C methionine and 18F α-methyl
tyrosine accumulate in the tumor cell via
an amino acid transporter system. 11C me-
thionine enters the metabolic process of
RNA and protein synthesis, but most 18F
α-methyl tyrosine in the tumor cell was not
incorporated into the protein/RNA syn-
thetic process like 123I α-methyl tyrosine.

Fig. 2   A case of an aplastic oligo-
dendroglioma. 18F α-methyl tyrosine
(FMT) PET (middle) could delineate
the brain tumor, which was visualized
as a ring-like enhanced lesion on the
T1 weighted MR image (right). But
FDG PET (left) failed to visualize the
tumor even if the tumor had increased
in size more than 3 months later (lower
images obtained in July 1998).

Fig. 3   A 34-yr-old female with an
osteosarcoma. She suffered from a
slow growing mass in the thigh. 18F α-
methyl tyrosine PET showed abnor-
mal accumulation in the calcified mass
lesion but FDG PET showed no ab-
normal accumulation.
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The theoretic and preclinical background of amino acid
imaging is sound and supports clinical applications. The
fact that amino acid imaging is less influenced by inflam-
mation may be advantageous in comparison with FDG
PET imaging, but its tumor specificity is not absolute.54  In
brain tumor imaging, the use of radiolabeled amino acids
is established, since the diagnostic accuracy of amino acid
imaging seems to be adequate. The general feasibility of
amino acid imaging in various tumor types has been
sufficiently shown, but more research such as multicenter
trials is required in a larger patient series and in a well-
defined clinical setting.

Tumor detection with 11C/18F choline and 11C acetate
More recently, [methyl-11C]choline (11C-choline) was
introduced as another novel tumor seeking agent for
detecting brain tumors.55,56 prostate cancer,57 lymph node
metastasis of esophageal cancer58 and mediastinal lymph
node metastasis of lung cancer.59 11C-choline is incorpo-

rated into the kidneys and liver, and converted to 11C-
betaine.60 11C-choline, but is phosphorylated within the
tumor cells, and is integrated into phosphatidylcholine
(lecithin) of a component of cell membrane phospholip-
ids. Once 11C-choline is incorporated into cell membrane
phospholipids, it remains there, as opposed to the “chemi-
cal trapping” characteristic of FDG. Since malignant
tumor cells proliferate rapidly, the biosynthesis of cell
membrane is facilitated, and it may yield an increasing
tumor uptake of 11C-choline. These different mechanisms
of FDG and 11C-choline may play complementary roles in
clinical PET in detecting various malignant tumors exhib-
iting different metabolic or biologic behavior.

11C-choline PET can be started just 5 min after the
intravenous injection of the tracer, and it may produce a
rapid diagnosis for suspected malignant tumors in com-
parison with FDG PET, which can be started at the earliest
40 min after the tracer injection. In the case of some
cancers, tumor detectability of 11C-choline PET seemed

Fig. 4   A 57-yr-old male with prostate cancer. At the slice level of 37.5 mm above the prostate, 11C-
choline PET (a) showed a regional lymph node metastasis (short arrow) and no radioactivity in the
urinary bladder. FDG PET (b) revealed noticeably high radioactivity in the urinary bladder (long arrow)
but no significant uptake in the lymph node metastasis (false positive result), which was confirmed  on
the CT image (c) (arrow). At the slice level of the prostate, both 11C-choline PET (d) and FDG PET (e)
revealed a primary lesion (long arrow) and a metastatic lesion of the pubic bone (short arrow) shown
on the CT image (f).
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to be slightly superior to that of FDG PET, especially in
patients suffering from prostate cancer (Fig. 4). The
absence of radioactivity in the urinary bladder on the 11C-
choline PET image makes it possible to improve tumor
detectability of intrapelvic lesions such as primary pros-
tate cancer and its metastasis (Fig. 4). On the other hand,
11C-choline is unsuitable for PET scan in patients with
tumors in the upper abdomen such as pancreas cancer or
hepatic cell carcinoma, since physiologically intense up-
take of 11C-choline in the liver and kidney may interfere
with the tumor visualization on PET images. Kobori et al.
reported that physiologically intense liver uptake of 11C-
choline prevents imaging metastatic lymph nodes in the
upper abdomen.58

Both 11C-choline and FDG accumulated in malignant
tumors more than in non-malignant lesions (Fig. 5).
Except for lung cancer, 11C-choline uptakes were higher
than FDG uptakes, and 11C-choline PET was expected to
provide a clearer tumor image than FDG PET. Image
quality may depend on the difference in the tumor uptake
mechanism. FDG is incorporated actively in limited tu-
mor cells that are in a hypoxic condition and obtain most
of their energy from glycolysis. In cases of relatively
small tumors with a sufficient blood supply, FDG will
unlikely be incorporated actively. In contrast, 11C-choline
uptake may be simply proportional to the rate of cell
membrane synthesis related to cell proliferation, irrespec-
tive of the oxygen supply or glycolysis-related energy
metabolism in tumor cells.59,60

Tumor detectability of 11C-choline PET seemed to be
slightly superior to that of FDG PET. 11C-choline is
labeled with 11C of a shorter physical half-life of radioac-
tivity (20 minutes), which is less suitable for whole body
imaging than FDG, labeled with 18F, having a relatively
longer physical half-life of radioactivity (109 minutes).
This is one of the major shortcomings of 11C-choline PET.
But even if we take into consideration the drawbacks of
11C-choline PET, such as its unsuitability for upper ab-
dominal imaging and whole body imaging, the combined
use of 11C-choline PET and FDG PET is ideal for diag-
nosing cancer patients. 11C-choline PET is indeed an ex-
cellent diagnostic tool for detecting malignant tumors.
Furthermore, 18F choline has also been developed and
its clinical usefulness is being investigated.61,62

11C acetate as a metabolic substrate of beta-oxidation,
precursor of amino acid, and fatty acid, is useful in
detecting various malignancies. Liu et al. assessed the
feasibility of clinical application of [11C]acetate in oncol-
ogy.63 They conducted 11C acetate PET studies in 513
patients with various malignancies. 11C acetate PET is
more accurate in detecting meningioma (accuracy 97%),
glioma (91%), nasopharyngeal cancer (93%), lymphoma
(85%), non-small cell cancer (81%), colon cancer (78%),
renal cell cancer (80%) and ovarian cancer (76%), than in
detecting small-cell cancer of the lungs, thyroid cancer
and pancreas cancer. The advantages of 11C acetate PET

were less time consuming (the entire procedure was
completed within 45 minutes after injection), no hyper-
glycemic effect and few urinary excretions. The disad-
vantages are the increased uptake in salivary glands and
pancreas, and sometimes the bowels, which may cause
either false positive or false negative results, and the on-
site-cyclotron dependency. Both advantages and disad-
vantages of 11C acetate are quite similar to those of 11C
choline. 11C acetate is clinically useful in detecting vari-
ous malignant tumors and may play a complementary role
to FDG.

TUMOR CHARACTERIZATION
BY EVALUATING DNA SYNTHESIS

Oncologists are developing a number of new potential
therapeutic methods, including gene targeting. To evalu-
ate tumor cell response to gene targeting therapy at a
preclinical level, a non-invasive method for evaluating
tumor cell proliferation is highly desirable in the clinical
context. The growth fraction can be estimated by the
incorporation of radiolabeled thymidine into the DNA of
S-phase cells. 11C tymidine PET shows an earlier chemo-
therapeutic response for lung cancer than FDG PET and
X ray CT as a morphologic evaluation.64 The thymidine
analogue bromodeoxyuridine (BrUdR) labeled with 76Br
was also developed for PET imaging and employed in a
PET scanner in patients with melanoma by Boni et al.65

Their study showed that the accumulation of [76Br]BrUdR
in PET correlated significantly with the immunohisto-
chemical assessment of S-phase and cycling cells.

Shields et al. developed and tested 18F 3′-deoxy-3′-
fluorothymidine [FLT].66 FLT is resistant to degradation
and is retained in proliferating tissues by the action of

Fig. 5   Standardized uptake (SUV) of 11C choline and FDG in
malignant lesions and non-malignant lesions. Differences be-
tween 11C-choline and FDG in SUVs were significant in lesions
(p < 0.002), but not significant in non-malignant lesions. Both
11C-choline and FDG PET revealed significantly higher SUV in
malignant lesions than in non-malignant lesions (p < 0.0001,
respectively).
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thymidine kinase 1 (TK). They presented high-contrast
images of normal marrow and tumors in a patient with
lung cancer.66 Recent clinical trials of FLT PET in pa-
tients with non-small cell lung cancer and breast cancer
seem to indicate its clinical usefulness in cancer diagno-
sis.67,68

TUMOR CHARACTERIZATION
BY EVALUATING HYPOXIC TUMOR CELLS

Since tumor hypoxia is associated with increased re-
sistance to radiotherapy or chemotherapy, development
of a method for measuring tumor hypoxia is important
in making an optimal decision on cancer treatment.
Misonidazole behaves uniquely in a low oxygen environ-
ment, in other words, misonidazole remains in the tumor
cell under hypoxic conditions. 18F fluoromisonidazole
was employed for the evaluation of tumor hypoxia in pa-
tients with nasopharyngeal cancer and its cervical lymph
node metastases.69

Koh et al. investigated tumor re-oxygenation of lung
cancer during fractionated radiation therapy by means of
PET with 18F fluoromisonidazole. They found that there
was a general tendency toward improved oxygenation in
human tumors during fractionated radiotherapy but these
changes were unpredictable.70 PET findings with 18F
fluoromisonidazole may be insufficient in extent and
timing to overcome the negative effects of existing pre-
treatment hypoxia. The selection of patients with radio-
resistant hypoxic cancers can be appropriately achieved
through single pretreatment evaluations of tumor hypoxia
using PET with 18F fluoromisonidazole.

THERAPEUTIC DRUG MONITORING AND
OPTIMIZATION FOR CANCER TREATMENT

WITH PET AND RADIOLABELED DRUGS

Assessing in vivo pharmacokinetics of therapeutic drugs
in each patient is needed to gain the efficient outcome of
drug treatment or the best choice of drugs. The conven-
tional way of therapeutic drug monitoring and optimiza-
tion is to measure the serum drug concentration, which
does not provide in vivo biodistribution of the therapeutic
drug. PET technology enables us to measure the drug
behavior in each patient once the positron emitter can be
attached to the drug, but there are some difficulties in the
wide spread use in clinical practice of this PET technol-
ogy. For example, once we label a radionuclide with a
drug, the metabolism of the radiolabeled drug may change,
and the difference between the metabolic fate of the
original drug and the radiolabeled drug must be accept-
able at the clinical level.

Moehler et al. employed 18F 5FU PET in colorectal
cancer with metastases to the liver treated with 5FU.71 In
scatter plot analysis, they found a statistically significant
correlation between the SUV of 18F 5FU and survival

time. Patients with high 18F-FU uptake values were more
likely to achieve at least stabilization of the disease with
planned chemotherapy. 18F-5FU PET may be a valuable
new tool for determining, prior to 5-FU-based chemo-
therapy, which patients are likely to have a good response
and prolonged survival.

Strauss et al. employed 15O labeled water and 18F 5FU
in patients with liver metastases from colorectal carci-
noma, and assessed the intrahepatic distribution of 5FU
after intraarterial and intravenous injection.72 Then they
found the very high and rapid elimination of the cytostatic
agent out of the tumor cells to be the main factor limiting
a therapy response. Furthermore, they found that the
injection route is also an important factor in determining
the in vivo drug distribution and the response to therapy.

Tamoxifen, the transisomer of a substituted triphenyl-
ethylene, is a nonsteroidal antiestrogenic drug that is
widely used for endocrine therapy in patients with breast
cancer. Tamoxifen binds to the cytoplasmic estrogen
receptor (ER) within the ER-positive tumor cell. ER
assays of excised tumor tissue provide information about
whether endocrine therapy is effective in each patient, but
only 60% of patients who have ER-positive breast cancer
have an objective response to endocrine therapy.73,74 The
development of a supplemental technique to predict the
responsiveness of breast cancer to adjuvant endocrine
therapy for individual patients would therefore be helpful.

Radiolabeled estrogen and progesterone have been
developed for use in PET to detect primary or metastatic
lesions and to predict the responsiveness of breast cancer
to endocrine therapy. The positron-emitting estrogenic
steroid 16 alpha-[18F]fluoro-17 beta-estradiol (FES) has
been shown to exhibit selective uptake in primary breast
carcinomas; the uptake of tracer by positron emission
tomography (PET) is strongly correlated with the tumor
estrogen-receptor concentration. FES PET revealed ER
positive primary and metastatic lesions in breast cancer
patients.75–78

The functional status of tumor ERs can be character-
ized in vivo by FES PET. The results of PET are predic-
tive of responsiveness to tamoxifen therapy in patients
with advanced ER(+) breast cancer.77,78 Because tamox-
ifen has several anti-tumor activities except for an ER-
mediated mechanism, radiolabeled tamoxifen may
provide more accurate information about anti-estrogen
therapy than does radiolabeled estradiol. Although a
further large-scale study is needed to confirm the clinical
utility of PET with 18F fluorotamoxifen, a preliminary
study reveals that PET with 18F fluorotamoxifen provided
useful information in predicting the effect of tamoxifen
therapy in patients with ER-positive breast cancer.79

In this review, we described PET radiopharmaceuticals
for cancer diagnosis and therapeutic management that are
already employed in clinical trials. There are many PET
radiopharmaceuticals that we could not include in this
review. Recent research in the field of PET oncology is
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undertaking the extremely difficult task of imaging the
gene expression in tumor cells or monitoring the gene
targeting cancer therapy.80,81 As shown in this review,
we are watching a continually changing landscape in the
field of PET oncology. Through trial and error, a field of
candidates have emerged in their efforts to develop “the
next FDG.” Technological advances in the field of PET
oncology provide optimism that the next technological
breakthrough will open up a new era in nuclear medicine.
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