¹⁸F-FDG とアミロイドイメージング剤を用いた脳 PET 撮像のための ファントム試験手順書 第4版

日本核医学会・PET 核医学委員会

2018/10/31版

目	次						
1	目的	目的 3					
2	使用	機器		3			
	2.1	PET(P	'ET/CT) 装置	3			
	2.2	放射能	測定装置 (ドーズキャリブレーター)	3			
	2.3	使用フ	アントム	3			
3	撮像	ミプロトコ	コール	3			
	3.1	ホフマ	ン 3D 脳ファントム試験	5			
		3.1.1	ファントム封入核種と放射能量	5			
		3.1.2	ファントムの作成	6			
		3.1.3	ファントムの配置	6			
		3.1.4	減弱補正データの撮像 (トランスミッション収集、X 線 CT 撮影)	6			
		3.1.5	エミッション撮像	6			
		3.1.6	ファントム画像の作成	7			
	3.2	円筒型	ファントム試験	7			
		3.2.1	ファントム封入核種と放射能量	7			
		3.2.2	ファントムの作成	7			
		3.2.3	ファントムの配置	7			
		3.2.4	減弱補正データの撮像 (トランスミッション撮像、X 線 CT 撮影)	8			
		3.2.5	エミッション撮像	8			
		3.2.6	ファントム画像の作成	8			
4	提出	9. 此位日					
	4.1	画像 .		8			
	4.2	PET 撮	。 是像情報	8			
5	評価	i方法		9			
	5.1 DICOM header 情報確認						
	5.2	PET 画	j像の評価	9			
	0.2	521	ホフマン 3D 脳ファントムの視覚的評価	9			
		5.2.2	ホフマン 3D 脳ファント人の PET 画像における関心領域の設定	10			
		5.2.3	%contrast	10			
		5.2.0	円筒刑ファント人の規償的評価	11			
		5.2.4	口筒型 / / / ー ムッ / / / / / / / / / / / / / / / / / /	11			
		526		11 11			
		5.9.7	か動係物 (Coofficient of Variation: CV)	11 10			
		0.2.1	冬期你致 (Coefficient of variation: UV)	12			

6	評価	基準	13
	6.1	視覚的評価	14
	6.2	物理学的評価	14
7	その	他の留意事項	15
	7.1	時刻合わせ	15
		7.1.1 基準時刻	15
		7.1.2 実施頻度	15
		7.1.3 精度	15
	7.2	放射能測定装置 (ドーズキャリブレーター)	15
		7.2.1 測定前の準備	15
		7.2.2 測定値の変動	15
		7.2.3 測定対象の幾何学的な位置	15
	7.3	評価対象とする再構成画像	15
付	録 A.	標準的プロトコールを想定した収集時間対応表	17
付	録 B.	視野外の放射能を模擬したファントムを削除した背景	18
叉	目	次	
	1	ホフマン 3D 脳ファントムの外観	4
	2	ホフマン 3D 脳ファントムの PET 画像例	4
	3	円筒型ファントムの外観	4
	4	ホフマン 3D 脳ファントムと円筒型ファントム試験を同日に行うスケジュール例	5
	5	ホフマン 3D 脳ファントムの配置	6
	6	円筒型ファントムの配置	8
	7	位置合わせ後のホフマン 3D 脳ファントムの代表位置スライス PET 画像	10
	8	3次元ガウスフィルター処理を行ったデジタルファントムの代表位置スライス画像	11
	9	デジタルファントム画像上で設定した ROI (灰白質相当部分: 赤色、白質相当部分: 黄色)	12
	10	均一性を評価するため円筒型ファントムの PET 画像に設置した円形 ROI	13
	11	円筒型ファントムの3スライス上に設置した円形 ROI	13
	12	変動係数を評価するため円筒型ファントムの PET 画像に設置した円形 ROI	13
	13	各スライスにおける uROI _{mean} の変動	14
表	そ目	次	
	1	ホフマン 3D 脳ファントムの諸元	4
	2	円筒型ファントムの諸元	4
	3	撮像情報の記入項目	9
	4	標準的プロトコール及び撮像開始時の脳内放射能量の推定	17
	_		

 $\mathbf{5}$ ホフマン 3D 脳ファントム及び円筒型ファントム撮像 (撮像開始時 20 MBq) データから切り出す収

4–3

1. 目的

一般社団法人日本核医学会(以下、日本核医学会)では、¹⁸F-FDGとアミロイドイメージング剤を用いた脳 PET 撮像を想定したファントム撮像を行い、一定以上の品質を持った撮像画像を提出できる施設を認定するための認証 プログラムを策定している。その一環として、日本核医学会が定めたファントムを使用したファントム試験を実 施することにより、撮像画像の品質を確認する。撮像された画像データは疑似臨床研究データとして DICOM 形 式で作成し、付随するデータと合わせて提出する。

被験者を想定して撮像されたファントム画像データに対して、監査機関は以下の評価を行う。

(1) PET 画像の DICOM header 情報の確認

被験者に対する撮像と同様に、種々のデータを PET 撮像機器に入力した上で、入力・設定された情報が正 しく DICOM header に書き込まれ、提出された画像に反映されていることを確認する。 被験者情報、撮像情報及び画像再構成情報について、DICOM header 情報を確認する。

(2) PET 画像の画質確認

PET(PET/CT) 装置で撮像された PET 画像の画質を評価する。 視覚的評価 (灰白質脳回を模擬した脳ファントムの分解能) と、物理的評価 (脳ファントムにおける灰白質部 分と白質部分の%コントラスト、円筒型ファントムにおける均一性と変動係数) を行い、総合的な画質確認 を行う。

2. 使用機器

2.1. PET(PET/CT) 装置

認証プログラムが対象とする PET(PET/CT) 装置を使用する。同一施設に同一機種が複数台設備されていて も、装置ごとにファントム試験を実施する。

2.2. 放射能測定装置 (ドーズキャリブレーター)

認証プログラムが対象とする放射能測定装置 (ドーズキャリブレーター)を使用する。同一施設に同一機種が複 数台設備されていても、装置ごとに試験を実施する。

2.3. 使用ファントム

認証プログラムにおいては、脳 PET 撮像評価用に適したファントムであるホフマン 3D 脳ファントム (Fig. 1) [1] と、日本核医学会が定めた均一性評価用の円筒型ファントム (Fig. 3) を用いる。2 種類のファントムの諸元を Table 1, Table 2 に示す。

ホフマン 3D 脳ファントムは、円筒形の外容器の内部に脳実質を模擬した構造物を格納していて、放射能を含む 溶液を満たすことで、脳実質を模擬した放射能分布が描出される。また、灰白質相当部分は白質相当部分の 4 倍 の濃度比になる設計となっている。(Table 1, Fig. 2)。

3. 撮像プロトコール

PET 撮像施設認証は再構成条件も含めた撮像全体に対して行われることから、ファントムの撮像は、実際の臨床研究もしくは日本核医学会が定めた標準的プロトコールに基づいた条件(以下、撮像プロトコール)で実施する必要がある。また、後述の評価を行った結果、撮像プロトコールの再検討が必要だと判断されたならば、撮像全体の条件を見直し、その見直した条件で画像を作成して提出を行う。

ホフマン 3D 脳ファントム撮像は、エミッション開始時刻において 20 MBq を封入したファントムを 30 分間エ ミッション撮像する (§3.1.5)。ホフマン 3D 脳ファントム試験に必要とする時間は、ファントム作成に要する 90 分 程度に、減弱補正用データの撮像時間と 30 分間のエミッション撮像時間を加えた時間である。

円筒型ファントム撮像は、エミッション開始時刻において 20 MBq を封入したファントムを 30 分間エミッショ

Table 1: ホフマン 3D 脳ファントムの諸元

	寸法
外容器	長さ = 170 mm*、直径 = 205 mm*
脳実質を模擬したスライス	底面から約 23 ~ 143 mm
脳実質を模擬した空洞の容積	約 1200 mL

* ... 外容器の寸法は一例であり、ファントムによって個体差がある。

Figure 1: ホフマン 3D 脳ファン トムの外観 Figure 2: ホフマン 3D 脳ファン

Table 2:	円筒型ファン	トムの諸元
----------	--------	-------

項目	寸法
外容器	長さ = 320 mm、直径 = 170 mm
溶液封入部	長さ = 300 mm、直径 = 160 mm
外容器の容積	$6,032 \text{ mL}^*$

* ... 6,032 mL は設計上の容積の一例であり、ファントムによって個体差があるため注意する。

Figure 3: 円筒型ファントムの外観

ン撮像する (§3.2.5)。円筒型ファントム試験に必要とする時間は、ファントム作成に要する 30 分程度に、減弱補 正用データの撮像時間と 30 分間のエミッション撮像時間を加えた時間である。

基本的に、ホフマン 3D 脳ファントム試験と円筒型ファントム試験の順序は問わないが、本ファントム試験手順 書ではホフマン 3D 脳ファントム試験を先に行い、同日に 2 種類のファントム試験を連続して行うことを想定した 記述を行う。ホフマン 3D 脳ファントム試験に引き続いて円筒型ファントム試験を行う場合 (Fig. 4) は、ホフマン 3D 脳ファントムのエミッション撮像中に円筒型ファントムを作成することができる。

ファントム作成からホフマン 3D 脳ファントムのエミッション撮像開始までに 90 分を要するとすると、同日に 両ファントム試験を行う場合に必要となる時間は、約 3 時間となる (Fig. 4)。

ファントム試験実施の都合に応じて、両ファントム試験 (§3.1.5, §3.2.5) を同日に連続して実施しなくてもよい が、各ファントム試験のエミッション開始時刻におけるファントム内の封入放射能量は、本ファントム試験手順書 で定める放射能量 (§3.1.1, §3.2.1) となるように、封入する放射能量を事前に検討して実施する必要がある。

ファントム撮像エミッション開始時刻の間隔60分の場合

Figure 4: ホフマン 3D 脳ファントムと円筒型ファントム試験を同日に行うスケジュール例

3.1. ホフマン 3D 脳ファントム試験

ホフマン 3D 脳ファントムを用いたファントム試験の目的は、¹⁸F–FDG とアミロイドイメージング剤を用いた 脳 PET 撮像を模擬した画像に対する評価を行うことである。

3.1.1. ファントム封入核種と放射能量

ファントムに封入する放射性薬剤は ¹⁸F-FDG とし、ホフマン 3D 脳ファントム試験に必要な放射能量 (A_H) は Eqn. 1 で算出する。

$$A_H = 20 \times \exp\left(\frac{T_m}{109.8} \times \ln(2)\right) \quad [\text{MBq}] \tag{1}$$

ここで、 $\ln(2)$ はeを底とする2の対数、 T_m はファントム作成からエミッション撮像開始までに要する時間 [min] である。

例えば、ファントム作成に要する時間 (Tm) が 90 分の場合、ホフマン 3D 脳ファントム作成開始時刻における

ファントム試験に必要な放射能量 (A_H) は Eqn. 2 となる。

$$A_H = 20 \times \exp\left(\frac{90}{109.8} \times \ln(2)\right) = 35.3 \text{ [MBq]}$$
 (2)

尚、ファントム作成時の放射能量が上記の放射能量と異なる場合でも、エミッション撮像開始時の放射能量が 20 MBq となるように時刻を調整することでホフマン 3D 脳ファントム試験を行うことが可能である。

3.1.2. ファントムの作成

まずホフマン 3D 脳ファントムに水を充填する。ここで使用する水は、不純物及び気泡を含まない方が望ましい ことから、蒸留水もしくは精製水を使用する。ホフマン 3D 脳ファントム内部は非常に複雑な構造になっており、 気泡が入りやすく十分隙間に水をいきわたらせることが難しい。そのため、プラスチックケースを用いて水中で ホフマン 3D 脳ファントムを組み立てることが望ましい [2]。

次に¹⁸F 溶液 (上記の例では 35.3 MBq) を外容器に封入し、十分な攪拌を行う。このとき、注入に用いたシリ ンジは、速やかに残留放射能量の測定を行って、注入した正味放射能量の計算を行う。放射能量の測定は秒単位で 測定時刻を記録して、各測定時刻からの経過時間による減衰を考慮する。

最後に良好な PET 画像を得るため、可能な限り空気が入らないように注意しながら水を充填する [2]。

3.1.3. ファントムの配置

ホフマン 3D 脳ファントムを PET(PET/CT) 装置のヘッドレストまたは寝台上に配置する。ホフマン 3D 脳ファ ントムを被験者に見立てて、仰臥位の状態に固定する。可能な限り検査時の被験者撮像と同様の手法及び器具で 固定を行う。被験者の頭部撮像をヘッドレスト上で行う場合はホフマン 3D 脳ファントムをヘッドレスト上に配置 し、被験者の頭部撮像を寝台上で行う場合は寝台上に配置する。プラグがついている天面が足側、小脳が模擬さ れている側を後頭部側とみなして撮像を行う。PET(PET/CT) 装置の位置合わせレーザーなどを用いて、撮像視 野中心にファントム中心がくるように慎重に配置する (Fig. 5)。X 線 CT 撮影の実施が可能な場合はエミッション 撮像前に CT 撮影を行い、ずれが認められる場合には位置修正を行う。

Figure 5: ホフマン 3D 脳ファントムの配置

3.1.4. 減弱補正データの撮像 (トランスミッション収集、X 線 CT 撮影)

外部線源を用いて減弱補正データの撮像を行う PET 専用機に関しては、トランスミッション収集を行う。また X線 CT を用いて減弱補正データの撮影を行う PET/CT 装置に関しては、減弱補正用の X線 CT 撮影を行う。

エミッション撮像の前後どちらで減弱補正用のデータを撮像するかは、撮像プロトコールに従って決定する。

3.1.5. エミッション撮像

エミッション撮像の開始時刻は、ホフマン 3D 脳ファントムにおける封入放射能量が 20 MBq ±5% となる時刻 から開始し、30 分間のエミッション撮像を行う。

収集方法は、原則3次元収集とし、PET施設調査票及びPET撮像施設認証の監査申込書を考慮して、監査時

に指示された収集時間のデータが得られるようにリストモード収集を行う (§4.1)。リストモード収集を行う目的 は、任意の撮像時間での画像 (Table 5) を作成するためであり、リストモード収集が不可能な装置の場合には、ダ イナミック収集で代替可能である。

尚、いずれの収集も不可能な場合は PET 撮像施設認証監査機関に問い合わせる。

3.1.6. ファントム画像の作成

PET 画像の画像再構成法や各種処理条件は撮像プロトコールに従うが、次項に示す評価基準 (§6) を満たす条件とする。

例えば、画像再構成を逐次近似法 (反復画像再構成法) で行い、iterative update(サブセット数×繰り返し回数) を 60~80 回程度とし [3–5]、画素サイズを検出器サイズの半分以下 (2mm 以下) にすれば、評価基準の条件を満た すことが期待できる [6,7]。

3.2. 円筒型ファントム試験

円筒型ファントムを用いたファントム撮像の目的は、一様な濃度の放射能溶液が封入されたファントムの PET 画像における均一性を評価することである。

3.2.1. ファントム封入核種と放射能量

ファントムに封入する放射性薬剤は ¹⁸F-FDG とし、円筒型ファントム試験に必要な放射能量 (A_C) は Eqn. 3 で 算出する。

$$A_C = 20 \times \exp\left(\frac{T_n}{109.8} \times \ln(2)\right) \quad [\text{MBq}] \tag{3}$$

ここで、 $\ln(2)$ は *e* を底とする 2 の対数、 T_n はファントム作成からエミッション撮像開始までに要する時間 [min] である。

例えば、ファントム作成に要する時間 (T_n) が 30 分の場合、円筒型ファントム作成開始時刻におけるファントム 試験に必要な放射能量 (A_C) は Eqn. 4 となる。

$$A_C = 20 \times \exp\left(\frac{30}{109.8} \times \ln(2)\right) = 24.2 \text{ [MBq]}$$
 (4)

尚、ファントム作成時の放射能量が上記の放射能量と異なる場合でも、エミッション撮像開始時の放射能量が 20 MBq となるように時刻を調整することで円筒型ファントム試験を行うことが可能である。

3.2.2. ファントムの作成

まず円筒型ファントムに水を充填する。ここで使用する水は、不純物及び気泡を含まない方が望ましいことか ら、蒸留水もしくは精製水を使用する。尚、放射能活性がない水がすでにファントムへ封入されている場合は、そ のまま使用してもよい。引き続いて、¹⁸F 溶液 (上記の例では 24.2 MBq)をファントムに封入する。このとき、注 入に用いたシリンジは、速やかに残留放射能量の測定を行って、注入した正味放射能量の計算を行う。放射能量の 測定は秒単位で測定時刻を記録して、各測定時刻からの経過時間による減衰を考慮する。

次に少量の空間 (空気) を残して一旦密封した後、十分な攪拌を行い、最後に可能な限り空気が入らないように 注意しながら水を充填する。

3.2.3. ファントムの配置

円筒型ファントムを PET(PET/CT) 装置のヘッドレストまたは寝台上に配置する。可能な限り検査時の被験者 撮像と同様の手法及び器具で固定を行う。被験者の頭部撮像をヘッドレスト上で行う場合は円筒型ファントムを ヘッドレスト上に配置し、被験者の頭部撮像を寝台上で行う場合は寝台上に配置する。PET(PET/CT) 装置の位 置合わせレーザーなどを用いて、円筒型ファントムが水平かつファントム中心が体軸方向視野の中央にくるよう に慎重に配置する (Fig. 6)。X 線 CT 撮影の実施が可能な場合はエミッション撮像前に CT 撮影を行い、ずれが認 められる場合には位置修正を行う。

Figure 6: 円筒型ファントムの配置

3.2.4. 減弱補正データの撮像 (トランスミッション撮像、X 線 CT 撮影)

外部線源を用いて減弱補正データの撮像を行う PET 専用機に関しては、トランスミッション収集を行う。また X線 CT を用いて減弱補正データの撮影を行う PET/CT 装置に関しては、減弱補正用の X線 CT 撮影を行う。

エミッション撮像の前後どちらで減弱補正用のデータを撮像するかは、撮像プロトコールに従って決定する。

3.2.5. エミッション撮像

エミッション撮像の開始時刻は、円筒型ファントムにおける封入放射能量が 20 MBq ±5% となる時刻から開始 し、30 分間のエミッション撮像を行う。

収集方法は、原則3次元収集とし、PET 施設調査票及びPET 撮像施設認証の監査申込書を考慮して、監査時 に指示された収集時間のデータが得られるようにリストモード収集を行う(§4.1)。リストモード収集を行う目的 は、任意の撮像時間での画像 (Table 5) を作成するためであり、リストモード収集が不可能な装置の場合には、ダ イナミック収集で代替可能である。

尚、いずれの収集も不可能な場合は PET 撮像施設認証監査機関に問い合わせる。

3.2.6. ファントム画像の作成

ホフマン 3D 脳ファントム画像の作成で使用した画像再構成条件で画像を作成する (§3.1.6)。

4. 提出項目

4.1. 画像

収集したデータから、撮像プロトコールに従って画像再構成を行い、PET 画像とトランスミッション画像 (PET/CT 装置の場合には X 線 CT 画像)を提出する。提出する PET 画像の単位は [Bq/mL] または [Bq/cc] とする。

PET 画像は、ホフマン 3D 脳ファントム (§3.1.5) と円筒型ファントムのエミッション撮像 (§3.2.5) のそれぞれ から、撮像プロトコールを考慮して切り出した収集時間と、本ファントム試験の全収集時間データをそれぞれ再 構成する。

尚、前者の収集時間は PET 施設調査票の撮像条件と認知症のための ¹⁸F–FDG とアミロイドイメージング剤を 用いた脳 PET 撮像の標準的プロトコールを想定した収集時間対応表 (Table 5) に基づいて監査時に指示する。

4.2. PET 撮像情報

本ファントム試験は、実際の被験者撮像を想定して実施する。

ホフマン 3D 脳ファントム (§3.1.5) と円筒型ファントムにおけるエミッション撮像 (§3.2.5) の撮像情報を PET (PET/CT) 装置に入力して撮像を行う。装置入力及び付随データへの記入内容を Table 3 に示す。

Table 3: 撮像情報の記入項目

i	被験者名	"HBP01–Brain"または"CYL01–Brain"†
ii	被験者 ID	"JSNM20170624H" または "JSNM20170624C"
		(施設略称 + ファントム試験実施日 + ファントム種別)
iii	検査目的	"施設認証試験_脳認知症"または "BrainShisetsuNinsyo"‡
iv	被験者身長	160.5 cm または 160 cm*
v	被験者体重	60.5 kg または 60 kg*
vi	放射性医薬品	fluorodeoxyglucose
vii	放射性核種の半減期	6588 sec または 109.8 min
viii	放射性核種の陽電子放出割合	0.967 (Branching Fraction)
ix	投与放射能量	(封入放射能量)
x	投与時刻	(放射能測定時刻)
xi	撮像時間	(PET 収集開始時刻)
xii	撮像プロトコール名	"Brain–Hoffman"または "Brain–Pool"‡
xiii	画像再構成条件	(撮像プロトコールに基づいた再構成条件)
xiv	画素サイズ	(pixel size)
xv	各種補正	(撮像プロトコールに基づいた補正条件)

†... 被験者名として入力する "HBP01"または "CYL01"は、各ファントムにつけられたシリアル番号を使用する。

‡… PET 装置のシステムによって、入力できないあるいは入力しきれない項目は、適宜省略を行う。

* ... 実数入力できない装置は四捨五入した数値とする。

5. 評価方法

評価対象は、DICOM 形式で提出されたファントム画像データ及び、付随する各種データとする。 提出されたデータに不備があれば担当者に問い合わせを行い、必要であれば再提出を指示する¹⁾。

5.1. DICOM header 情報確認

入力された情報が適切に DICOM header 情報に反映されているかを確認する。メーカーによって確認できる内容とできないものが存在することに留意し、header 情報で確認できない場合は代替手段で確認してもよい。

5.2. PET 画像の評価

¹⁸F–FDG とアミロイドイメージング剤を用いた脳 PET 撮像を模擬した画像に対する視覚的及び物理的評価を 行う。

PET 画像の評価は、エミッション撮像 (§3.1.5、§3.2.5) で収集されたデータから撮像プロトコールを考慮して 切り出した収集時間の再構成画像 (以下、臨床時間画像) と、本ファントム試験の全収集時間の再構成画像 (以下、 全時間画像) に対して行う (§4.1)。

5.2.1. ホフマン 3D 脳ファントムの視覚的評価

提出されたホフマン 3D 脳ファントム PET 画像について、視覚的に分解能の評価を行う。

¹)画像データに関しては、施設において提出できる方法で提出された DICOM 形式のデータであればよいが、PACS を介して出力された 場合など、画像評価に不適切である場合や、提出される画像データとして不適切な状態であると判断される場合には再提出を指示する。

具体的には、デジタルファントム画像²⁾に各種サイズの3次元ガウスフィルター処理を行ったデジタル画像を予め作成し、代表位置とする複数枚のスライスを比較し、どのサイズの3次元ガウスフィルター処理を行ったデジタル画像と近いかを視覚的に評価する。

ホフマン 3D 脳ファントムにおける PET 画像の分解能を評価する際は、以下の点に留意する。

- (1) 評価は複数の判定者 (PET 核医学認定医もしくは核医学専門技師など) が行う。
- (2) 提出されたホフマン 3D 脳ファントムの PET 画像を、基準とするデジタルファントム画像に位置合わせする。
- (3) 可能な限り実際の撮像プロトコールで指定されている読影端末で行う。
- (4) PET 画像の表示カラールックアップテーブルは、Invert Gray scale とする。
- (5) 画像表示ウィンドウレベルは、上限値= 最大画素値、下限値= 上限値の 10%とする (Fig. 7)³⁾。
- (6) 位置合わせしたホフマン 3D 脳ファントムにおける PET 画像の代表位置スライス (Fig. 7) と、各種 3 次元 ガウスフィルター処理を行ったデジタル画像の対応する代表位置スライス (Fig. 8) とを比較する。
- (7) もっとも近いと判断されるフィルター処理画像を選び、そのフィルターの半値幅 (FWHM) をシステムの分 解能として判定する。

5.2.2. ホフマン 3D 脳ファントムの PET 画像における関心領域の設定

次項に示す%contrast を評価するために、位置合わせしたホフマン 3D 脳ファントムの PET 画像及び、デジタ ルファントム画像に関心領域 (ROI)⁴⁾を設定する。

提出されたホフマン 3D 脳ファントムの PET 画像に ROI を設定する際は、以下の点に留意する。

- (1) 提出されたホフマン 3D 脳ファントムの PET 画像を、基準とするデジタルファントム画像に位置合わせする。
- (2) 位置合わせしたホフマン 3D 脳ファントムの PET 画像に対して、ファントム内放射能濃度が設計上4対1 になる、灰白質と白質部分に相当する ROI(Fig. 9) [8] を設定し、ROI 内の計数を求める。
- (3) 基準とするデジタルファントム画像に対して、同じ ROI を設定し ROI 内の計数を求める。

Figure 7: 位置合わせ後のホフマン 3D 脳ファントムの代表位置スライス PET 画像

5.2.3. %contrast

ホフマン 3D 脳ファントム PET 画像の臨床時間画像 (§5.2) における %contrast を Eqn. 5 を用いて計算する。

$$\% \text{contrast} = \frac{\text{GM}_P/\text{WM}_P - 1}{\text{GM}_d/\text{WM}_d - 1} \times 100[\%]$$
(5)

ここで、 GM_P と WM_P は位置合わせされた PET 画像上の灰白質と白質相当部分における ROI 内の平均計数 であり、 GM_d はデジタルファントム画像上の灰白質相当部分の ROI 内の平均計数、 WM_d は同じく白質相当部分 の ROI 内の平均計数である。

²⁾デジタルファントム画像は、ファントムの設計図に相当するデジタルデータであり、ファントム内部の空隙を画像として表したデータで ある。無限の分解能を持つ装置であれば、理論的にデジタルファントム画像と同等の画像が得られる。

³⁾SEAD–J 研究及び J–ADNI 研究における FDG-PET 読影時の表示条件を参考にしている。

⁴⁾ J-ADNI 研究で PET QC コアが製作した ROI テンプレートである (Fig. 9)。デジタルファントム画像上に ROI 設定したキャプチャー 画像は日本核医学会員ページ内にある核医学データベースで公開されている。

Figure 8:3次元ガウスフィルター処理を行ったデジタルファントムの代表位置スライス画像

5.2.4. 円筒型ファントムの視覚的評価

提出された円筒型ファントムの PET 画像について、視覚的に不均一なアーチファクトがないかを評価する。

5.2.5. 円筒型ファントムの PET 画像における ROI の設定

次項に示す視野内均一性 (§5.2.6) と変動係数 (§5.2.7) を評価するために提出された円筒型ファントムの PET 画像に ROI を設定する。

視野内均一性を評価するため、円筒型ファントムにおける PET 画像の体軸方向視野中央スライスに Fig. 10 を 参考にして、大きさ 500 mm² 程度の円形 ROI(半径約 13 mm の円形 ROI) を 17 個設定する。円形 ROI は、ス ライスの中心に 1 個、それを取り囲むように 4 個を重ならないように設置し、さらにその外側かつファントム辺 縁から 15 mm 以上内側に 12 個を円周方向に均等に設置する。また同様の円形 ROI を、視野に全脳を含んだ場合 に小脳の位置を想定する –40mm 程度のスライスと同じく頭頂近辺の位置を想定する +40mm 程度のスライスに も設定する (Fig. 11)。

変動係数を評価するため、円筒型ファントムの体軸方向視野中央スライスに Fig. 12 を参考にして、大きさ 120 cm² 程度の円形 ROI(半径約 65 mm の円形 ROI)を設定する。

5.2.6. 視野内均一性

円筒型ファントムの PET 画像に設定した円形 ROI(§5.2.5) 内の平均計数 (uROI_{mean}) から、Eqn. 6 を用いて uROI_{mean} の全平均値 (uROI_{TOT}) を求める。

Figure 9: デジタルファントム画像上で設定した ROI (灰白質相当部分:赤色、白質相当部分:黄色)

$$uROI_{TOT} = \frac{\sum_{i=1}^{n} uROI_{mean,i}}{n}$$
(6)

ここで、 $uROI_{mean,i}$ は各スライスに設定した各円形 ROI 内の平均計数、nは各スライスに設定した円形 ROI の総数 51^{5})である。

各スライスの円形 ROI 内の uROI_{mean} を用いて、横軸を ROI 番号、縦軸を uROI_{TOT} に対する相対誤差とした グラフを作成する (Fig. 13)。uROI_{TOT} に対する相対誤差 (Δ uROI_{mean}) は Eqn. 7 を用いて求める。

$$\Delta u \text{ROI}_{mean} = \left(\frac{u \text{ROI}_{mean}}{u \text{ROI}_{TOT}} - 1\right)$$
(7)

また、相対誤差の標準偏差 $(SD_{\Delta uROI})$ は Eqn. 8 を用いて求める。

$$SD_{\Delta uROI} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (\Delta uROI_{mean,i})^2}$$
(8)

5.2.7. 変動係数 (Coefficient of Variation: CV)

円筒型ファントムの PET 画像に設定した円形 ROI(§5.2.5) から、Eqn. 9 を用いて変動係数 (CV) を求める。

⁵⁾(1+4+12) × 3 スライス = 51 個

$$CV = \frac{SD_n}{nROI_{mean}} \times 100\%$$
(9)

4–3

ここで、SD_n は設定した円形 ROI(nROI) 内の標準偏差、nROI_{mean} は nROI 内の平均計数である。

Figure 10: 均一性を評価するため円筒型ファントムの PET 画像に設置した円形 ROI

Figure 11: 円筒型ファントムの3スライス上に設置した円形 ROI

Figure 12: 変動係数を評価するため円筒型ファントムの PET 画像に設置した円形 ROI

6. 評価基準

本ファントム試験手順書における評価基準は、J-ADNI研究 [10] を参考に定めたものである。

6.1. 視覚的評価

視覚による分解能の評価は、ホフマン 3D 脳ファントムにおける PET 画像の全時間画像 (§5.2) に対して行い、 半値幅 8 mm のガウスフィルター処理を行ったデジタルファントム画像よりも高い分解能の PET 画像が得られる ことを評価する。

また、円筒型ファントムにおける PET 画像の全時間画像 (§5.2) について、横断面、矢状断面及び冠状断面に不 均一なアーチファクトがないことを評価する。

6.2. 物理学的評価

以下について評価する。これらの画質に対する評価の目標は、J-ADNI研究 [6,10] で収集されたファントムデー タを参考に定めたものである。

- (1) 脳 PET 撮像画像のコントラスト (%contrast) を評価する。ホフマン 3D 脳ファントム PET 画像の臨床時間 画像 (§5.2) における%contrast を算出し、55%以上の数値が得られることを目標とする。
- (2) 均一性 ($\Delta u ROI_{mean}$) を評価する。円筒型ファントムの PET 画像における全時間画像 (§5.2) に設定した円 形 ROI の相対誤差 ($\Delta u ROI_{mean}$) の標準偏差 ($SD_{\Delta uROI}$) が 0.0249 以下であることを目標とする。ここで、 $SD_{\Delta uROI}$ が 0.0249 以下であれば、 $\Delta u ROI_{mean}$ の変動は ±5%以内であることが期待できる。また、ROI 番 号に対する相対誤差の変動から特定の傾向が見出されないことを確認する (Fig. 13)。
- (3) 雑音の程度を示す変動係数 (CV) を評価する。円筒型ファントムの PET 画像における臨床時間画像 (§5.2) の変動係数を算出し、15 %以下であることを目標とする。

Figure 13: 各スライスにおける uROImean の変動

7. その他の留意事項

7.1. 時刻合わせ

時刻合わせは始業点検として実施する。時刻が記録・装置に関係する使用機器は、ファントム試験の開始前に すべての時刻を基準時刻に合わせて正確な放射能量を測定する。

7.1.1. 基準時刻

時報によって確認できる標準時刻や、電波時計(標準電波を正常に受信し時刻が適切に調整されているもの)への同期が行われた基準時計を使用することが望ましいが、機器操作の関係上時刻合わせが容易でない機器があれ ば、その機器の時刻を基準時刻とすることで相対的な時刻合わせを行う。

7.1.2. 実施頻度

時刻合わせは適切な頻度で行われる必要がある。始業点検として実施するのであれば問題は少ないが、定期的 に確認する必要がある。

7.1.3. 精度

検査で使用する核種によって時刻のずれによる影響は異なる。1 分のずれは ¹⁸F を用いた検査では約 0.6%、¹¹C を用いた検査では約 3.5%の不正確さにつながる。

本認証プログラムでは、時間減衰補正を十分正確に実施するために 1%の精度を目標に定める。秒単位が表示されない機器においても、同等の精度を求める。

7.2. 放射能測定装置 (ドーズキャリブレーター)

放射能測定装置は、測定位置の放射能を測定する装置である。装置の安定性・測定の正確性の観点から、運用 上いくつか注意が必要である。

7.2.1. 測定前の準備

市販されている放射能測定装置は、加圧ガス式電離箱が大半であるため、電流値から放射能を決定する形式で ある。点検時を除き常時通電されていることが望ましいが、最低限測定を行う 60 分以上前には電源を入れて使用 状態としておき、安定性を確保する必要がある

また、印加電圧が正常範囲内であることを確認した上で、周辺に線源がないことを確認するためにバッググラ ウンド測定を複数回行う。

7.2.2. 測定値の変動

電離箱方式の装置は、電離電流から放射能を求めるため、動作環境に依存して測定値が変動することがある。そ こで、放射能量の測定では複数回の測定を実施する。本ファントム試験手順書では、ファントム封入前の放射能 量を複数回測定し、減衰以上の大きな変動がなければファントム封入放射能量とする。

7.2.3. 測定対象の幾何学的な位置

表示される測定値は、線源を測定する位置に依存性がある。投与の残量などを計測する場合は、治具を用いて 線源を封入するシリンジやバイアルの計測位置が上下方向の下部 1/3~1/4 付近に来るように留意する。

7.3. 評価対象とする再構成画像

評価対象とする PET 画像の画像再構成法や各種処理条件は撮像プロトコールに従う。撮像プロトコールにおい て、想定する視覚評価及び定量評価の対象となる画像を作成する画像再構成法や各種処理条件がそれぞれ異なる 場合、評価基準 (§6) に照らす対象画像及び評価値は、当該プロトコールでの評価対象とする画像を想定した評価 を行う。

以上

参考文献

- Hoffman EJ, Culer PD, Digby WM, et al: 3–D phantom to simulate cerebral blood flow and metabolic images for PET. IEEE Trans Nucl Sci. 1990; 37(2): 616–620. §2.3
- [2] 我妻慧: 脳 PET 撮像実験. 市川肇, 小野口昌久, 近藤正司, 對間博之, 長木昭男, 花岡宏平, 三輪建太, 山木範泰 編. 初学者のための核医学実験入門. 公益社団法人日本放射線技術学会出版委員会, 京都, 2016: 78-84. §3.1.2, §3.1.2
- [3] Jaskowiak CJ, Bianco JA, Perlman SB, et al: Influence of reconstruction iterations on ¹⁸F–FDG PET/CT standardized uptake values. J Nucl Med. 2005; 46(3): 424–428. §3.1.6
- [4] Panin VY, Kehren F, Michel C, et al: Fully 3-D PET reconstruction with system matrix derived from point source measurements. IEEE Trans Med Imaging. 2006; 25(7): 907–921. §3.1.6
- [5] Yokoi T, Shinohara H, Onishi H: Performance evaluation of OSEM reconstruction algorithm incorporating three-dimensional distance-dependent resolution compensation for brain SPECT: A simulation study. Ann Nucl Med. 2002; 16(1): 11–18. §3.1.6
- [6] Ikari Y, Nishio T, Miya Y, et al: Head motion evaluation and correction for PET scans with ¹⁸F–FDG in the Japanese Alzheimer's disease neuroimaging initiative (J-ADNI) multi-center study. Ann Nucl Med. 2012; 26(7): 535–544. §3.1.6, §6.2
- [7] Akamatsu G, Ikari Y, Nishio T, et al: Optimization of image reconstruction conditions with phantoms for brain FDG and amyloid PET imaging. Ann Nucl Med. 2016; 30(1): 18–28. §3.1.6
- [8] Ikari Y, Akamatsu G, Nishio T, et al: Phantom criteria for qualification of brain FDG and amyloid PET across different cameras. EJNMMI Phys. 2016; 3: 23. 2
- Hays MT, Segall GM: A mathematical model for the distribution of fluorodeoxyglucose in humans. J Nucl Med. 1999; 40(8): 1358–1366. Table 4
- [10] Iwatsubo T. Japanese Alzheimer's disease neuroimaging initiative: present status and future. Alzheimer's Dementia. 2010; 6(3): 297–299. §6, §6.2, Table 4
- [11] Lin KJ, Hsu WC, Hsiao IT, et al: Whole-body biodistribution and brain PET imaging with [¹⁸F]AV-45, a novel amyloid imaging agent – a pilot study. Nucl Med Biol. 2010; 37(4): 497–508. Table 4
- [12] Nelissen N, Van Laere K, Thurfjell L, et al: Phase 1 study of the Pittsburgh compound B derivative ¹⁸F– Flutemetamol in healthy volunteers and patients with probable Alzheimer's disease. J Nucl Med. 2009; 50(8): 1251–1259. Table 4
- [13] Rowe CC, Ackerman U, Browne W, et al: Imaging of amyloid beta in Alzheimer's disease with ¹⁸F–BAY94– 9172, a novel PET tracer: proof of mechanism. Lancet Neurol. 2008; 7(2): 129–135. Table 4
- [14] Piramal Healthcare and SCETI. Information of ¹⁸F-Florbetaben clinical trials. Table 4
- [15] 織田圭一,坂田宗之,西尾知之,他.脳PETにおける装置差に関する基礎的研究.日本放射線技術学会雑誌. 2012; 68(6): 669-679. §7.3

付録A.標準的プロトコールを想定した収集時間対応表

本手順書で示しているファントム試験によって、ある条件における脳 PET 画像の画質を評価することができる。 一方、臨床研究の脳 PET 撮像で行われることが想定される "認知症のための ¹⁸F-FDG を用いた脳 PET 撮像 の標準的プロトコール"(日本核医学会・PET 核医学委員会) 及び、"アミロイドイメージング剤を用いた脳 PET 撮像の標準的プロトコール"(日本核医学会・PET 核医学委員会) で標準とされる投与放射能量や収集時間は別々 に設定されており、収集される脳 PET 画像の画質は、さらに各放射性薬剤の体内薬物動態、放射性同位元素の半 減期によっても左右される。

そのため、標準的プロトコールに対応したファントム画像評価を行うために、対応する PET 撮像と画質が同等 になるよう本ファントム試験の PET 収集データから収集時間を切り出し、同等の収集データ量で画像作成を行う。

標準的プロトコールの投与放射能量と撮像時間及び、放射性薬剤の典型的な薬物動態を考慮し (Table 4)、本ファントム試験設定条件から切り出す収集時間の目安を示す (Table 5)。

放射性薬剤	投与量	待機時間	撮像時間	撮像開始時の脳内放射能量の推定
$^{18}\mathrm{F-FDG}$	$185 \mathrm{MBq}$	30分	30 分間	20 MBq; [9]
$^{11}\mathrm{C}\text{-PiB}$	$555 \mathrm{MBq}$	50 分	20 分間	3 MBq; J-ADNI [<mark>10</mark>] データより推定
$^{18}\mathrm{F-Florbetapir}$	$370 \mathrm{~MBq}$	50 分	20 分間	12 MBq; [11]
$^{18}\mathrm{F-Flutemetamol}$	$185~\mathrm{MBq}$	90分	30 分間	3 MBq; [12]
$^{18}\mathrm{F-Florbetaben}$	300 MBq	90分	20 分間	6 MBq; [13, 14]

Table 4:標準的プロトコール及び撮像開始時の脳内放射能量の推定

Table 5: ホフマン 3D 脳ファントム及び円筒型ファントム撮像 (撮像開始時 20 MBq) データから切り出す収集 時間

標準的プロトコール	切り出し時間
18 F–FDG	0 ~ 1800 秒
$^{11}\mathrm{C-PiB}$	0 ~ 135 秒
$^{18}\mathrm{F-Florbetapir}$	0 ~ 710 秒
$^{18}\mathrm{F-Flutemetamol}$	0 ~ 255 秒
$^{18}\mathrm{F-Florbetaben}$	0 ~ 355 秒

付録 B. 視野外の放射能を模擬したファントムを削除した背景

本手順書第2版以前においては、ホフマン3D脳ファントム撮像の際、視野外の放射能を模擬した円筒型ファントムを PET 装置の寝台上に設置した状態でエミッション撮像を行うこととしていた。しかし、J-ADNI研究で得られた PET(PET/CT)装置12台のファントムデータを対象に、視野外の放射能が画像の均一性に与える影響を 撮像視野内の全スライスにて評価したところ、現在主として臨床で使用されている PET/CT 装置4台において は、最大でも7%程度の誤差に留まり、全スライスの平均誤差は5%以下であった。また、過去の報告においても、 現在一般的に使用されている PET/CT 装置3台(文献 [15]中 Fig.3 B, C, F)においては、視野外の放射能の有 無に関わらず画像の均一性は安定していた。

上記の結果より、一般的に使用されている PET/CT 装置では、視野外の放射能が¹⁸F-FDG 及びアミロイドイ メージング剤を用いた脳 PET 画像に与える影響は小さいと考えられ、ファントム作成に係る時間の短縮及び被ば く線量の低減といった観点から、視野外の放射能を模擬した円筒型ファントムを削除することとした。

履歴

ver	日付	説	明
1-0	2013.8	初版	日本核医学会 分子イメージング戦略会議
2-1	2015.2	第2版	Florbetaben を追加
3-1	2015.12	第3版	視野外の放射能を模擬したファントムの削除
4-1	2017.7	第4版	相対誤差の標準偏差計算式を改定及び他の手順書との整合性を修正
4-2	2018.1	第4版	ROI テンプレート公開及びファントム試験に使用する放射性薬剤を指定
4-3	2018.10	第4版	標準的プロトコールとの齟齬を修正